Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Does a Heart Know When It’s Big Enough?

29.03.2010
A protein discovered in fruit fly eyes has brought a Johns Hopkins team closer to understanding how the human heart and other organs automatically “right size” themselves, a piece of information that may hold clues to controlling cancer.

The protein, named Kibra, is linked to a relay of chemical signals responsible for shaping and sizing tissue growth by coordinating control of cell proliferation and death, according to research published Feb. 16 in Developmental Cell by teams at Johns Hopkins and Florida State University.

In a series of experiments, the scientists manipulated Kibra’s role in a signaling network called the Hippo pathway, which consists of several proteins working together as a braking system. Counterparts of the components in the Hippo pathway in flies are found in most animals, suggesting that this pathway may act as a “global regulator” of organ size control, according to Duojia Pan, Ph.D., a professor of molecular biology and genetics at Johns Hopkins University School of Medicine and an investigator of the Howard Hughes Medical Institute.

“People have always been curious about what makes a hippopotamus grow so much bigger than a mouse,” says Pan, “as well as how our two hands, which develop independently, get to very similar sizes. Our studies show that Kibra regulates Hippo, which keeps organs characteristically sized, preventing my heart or your liver from becoming as hefty as those befitting a large African amphibious mammal,” he adds, referring to the signaling pathway’s name.

Pan's team identified the gene they named Hippo in 2003, showing that an abnormal copy of it led to an unusually large eye in a developing fruit fly. Two years later, the team established that Hippo lies in the middle of a signaling cascade: Its “stop growing” message is relayed along a molecular pathway of biochemically linked proteins, which limits the expression of genes that otherwise promote cell division and cell survival. In 2007, they showed that by manipulating the pathway in a mouse liver, the organ grew to five times its normal size and became cancerous.

The new experiments, Pan says, moved the investigation “slowly and methodically upstream” to find Hippo’s trigger, where, he believes, “the key to size-control lies.” The Hippo-Kibra link could be a key to understanding and treating cancer, Pan adds, because cancer is literally a disease of uncontrolled growth.

The Johns Hopkins and Florida State teams discovered Kibra by studying ovarian cells from adult flies and by using a gene-controlling technique called RNA interference (RNAi) to systematically turn off each of the approximately 14,000 genes in the fly genome, one at a time, in cultured fly cells. They then analyzed the function of Kibra in the developing fly larvae. Each of the specialized discs that develop into a fly’s eyes starts out with approximately 30 to 40 cells and then grows by about a thousand-fold in the larval stage before stopping, making larvae the ideal place to catch the right-sizing process in action, Pan says. These studies told them that the Hippo pathway was not active in the absence Kibra.

Further studies on human cells measured the activity of the Hippo pathway while manipulating human Kibra and showed that like its fruit fly counterpart, human Kibra acts as a tumor suppressor protein that regulates Hippo signaling.

“The discovery of Kibra moves us an important step closer to identifying the initial signal that triggers Hippo’s activation,” Pan says. “We’re making progress along the Hippo pathway, heading toward the cell surface, and believe we will find that elusive signal en route.”

The name Kibra, a shortened combination of the words kidney and brain, is based on earlier evidence that Kibra is prominently expressed in those two organs. Kibra’s role in memory performance in humans has already garnered interest.

Authors of the paper, in addition to Pan, are Jianzhong Yu, Stephen Klusza and Wu-Min Deng of Florida State University; and Yonggang Zheng and Jixin Dong of Johns Hopkins.

This research was supported by grants from the National Institutes of Health.

On the Web:
http://humangenetics.jhmi.edu/index.php/faculty/duojia-pan.html
http://www.cell.com/developmental-cell/

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.cell.com/developmental-cell/
http://humangenetics.jhmi.edu/index.php/faculty/duojia-pan.html
http://www.jhmi.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>