Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Getting a grip: 'Velcro'-like structure helps bees stick to flowers

18.05.2009
When bees collect nectar, how do they hold onto the flower? Cambridge University scientists have shown that it is down to small cone-shaped cells on the petals that act like 'velcro' on the bees' feet.

New research, published online in today's Current Biology, shows that bumblebees can recognise the texture of petal surfaces by touch alone. More importantly, they choose to land on petals with conical cells that make it easier to grip, rather than on flat, smooth surfaces. With this extra grip, they can extract nectar from the flower more efficiently.

In the natural world, bees can take visual or olfactory cues without needing to land on the flower itself. Their ability to identify conical-celled surfaces by touch would therefore seem to be of limited use in terms of flower recognition. The researchers, led by Beverley Glover, wondered whether the conical cells play a different role by providing better grip on an otherwise slippery plant surface, thereby making nectar collection easier for the bees.

To test this, the researchers used artificial flowers cast from epoxy resin, half with conical cells and half with flat surfaces. When these casts were horizontal, the bees showed no preference, visiting each type roughly half the time. However, once the angle of the cast increased, so did the bees' preference for the conical cells. When these casts were vertical, the bees visited the conical-celled ones over 60% of the time.

The researchers, who were funded by the Natural Environment Research Council (NERC), were able to visualise why the bees preferred conical cells. Using high-speed video photography they saw that when bees attempted to land on the flat-celled epoxy petals they would scramble for grip, rather like a climber struggling to find a foothold on an ice-covered cliff. However, on the conical-celled casts the bees were always able to find grip, stop beating their wings and feed on the flower.

The next step was to establish whether bees in the natural world actually preferred real flowers with conical cells. To test this, the researchers used snapdragon plants, which have conical petal cells, and mutant snapdragons, lacking such cells. When the flowers were horizontal and required little handling the bees would visit the conical-celled flowers 50% of the time. However when the flowers were vertical and required complex handling the bees learnt to recognise the conical-celled flowers and landed on them 74% of the time.

Around 80% of flowers have these conical cells and the researchers believe that all pollinators that land on flowers (such as butterflies, flies and other kinds of bee) may have a preference for petals with a rough surface.

Beverley Glover said: "For bees to maintain their balance and hold onto a flower is no easy task, especially in windy or wet conditions. It's great to see that evolution has come up with the simple solution of equipping flowers with a Velcro-like surface that bees can get a grip on".

For additional information please contact:

Simon Shears, Office of Communications, University of Cambridge
Tel: +44 (0) 1223 332300, +44 (0) 1223 748174
Email: simon.shears@admin.cam.ac.uk

Simon Shears | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>