Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A GPS in Your DNA

17.08.2012
TAU research says genetics can reveal your geographic ancestral origin
While your DNA is unique, it also tells the tale of your family line. It carries the genetic history of your ancestors down through the generations. Now, says a Tel Aviv University researcher, it's also possible to use it as a map to your family's past.

Prof. Eran Halperin of TAU's Blavatnik School of Computer Science and Department of Molecular Microbiology and Biotechnology, along with a group of researchers from University of California, Los Angeles, are giving new meaning to the term "genetic mapping." Using a probabilistic model of genetic traits for every coordinate on the globe, the researchers have developed a method for determining more precisely the geographical location of a person's ancestral origins.

The new method is able to pinpoint more specific locations for an individual's ancestors, for example placing an individual's father in Paris and mother in Barcelona. Previous methods would "split the difference" and place this origin inaccurately at a site between those two cities, such as Lyon.

Published in the journal Nature Genetics, this method has the potential to reveal the ancestry, origins, and migration patterns of many different human and animal populations. It could also be a new model for learning about the genome.

Points of origin

There are points in the human genome called SNPs that are manifested differently in each individual, explains Prof. Halperin. These points mutated sometime in the past and the mutation was then passed to a large part of the population in a particular geographic region. The probability of a person possessing these mutations today varies depending on the geographical location of those early ancestors.

"We wanted to ask, for example, about the probability of having the genetic mutation 'A' in a particular position on the genome based on geographical coordinates," he says. When you look at many of these positions together in a bigger picture, it's possible to group populations with the same mutation by point of origin.

To test their method, Prof. Halperin and his fellow researchers studied DNA samples from 1,157 people from across Europe. Using a probabilistic mathematical algorithm based on mutations in the genome, they were able to accurately determine their ancestral point or points of origin using only DNA data and the new mathematical model, unravelling genetic information to ascertain two separate points on the map for the mother and father. The researchers hope to extend this model to identify the origins of grandparents, great-grandparents, and so on.

The new method could provide information that has applications in population genetic studies — to study a disease that impacts a particular group, for example. Researchers can track changes in different genomic traits across a map, such as the tendency for southern Europeans to have a mutation in a gene that causes lactose intolerance, a mutation missing from that gene in northern Europeans.

A closer look at migration

The researchers believe that their model could have also relevance for the animal kingdom, tracking the movement of animal populations. "In principle, you could figure out where the animals have migrated from, and as a result learn about habitat changes due to historical climate change or other factors," says Prof. Halperin.

For more information, visit the project's website at: http://genetics.cs.ucla.edu/spa/demo.html

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>