Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A glow of recognition

15.12.2011
New detectors developed at MIT could provide easy visual identification of toxins or pathogens.

Researchers at MIT have developed a new way of revealing the presence of specific chemicals — whether toxins, disease markers, pathogens or explosives. The system visually signals the presence of a target chemical by emitting a fluorescent glow.


The approach combines fluorescent molecules with an open scaffolding called a metal-organic framework (MOF). This structure provides lots of open space for target molecules to occupy, bringing them into close proximity with fluorescent molecules that react to their presence.

The findings were reported in the Journal of the American Chemical Society in a paper by assistant professor of chemistry Mircea Dincã, with postdoc Natalia Shustova and undergraduate student Brian McCarthy, published online in November and to appear in a forthcoming print issue.

The work could have significant applications in sensors attuned to specific compounds whose detection could be read at a glance simply by watching for the material to glow. “A lot of known sensors work in reverse,” Dincã says, meaning they “turn off” in the presence of the target compound. “Turn-on sensors are better,” he says, because “they’re easier to detect, the contrast is better.”

Mark Allendorf, a research scientist at Sandia National Laboratory, who was not involved in this work, agrees. “Present materials generally function via luminescence quenching,” and thus “suffer from reduced detection sensitivity and selectivity,” he says. “Turn-on detection would address these limitations and be a considerable advance.”

For example, if the material is tuned to detect carbon dioxide, “the more gas you have, the more intensity in the response,” making the device’s readout more obvious. And it’s not just the presence or absence of a specific type of molecule: The system can also respond to changes in the viscosity of a fluid, such as blood, which can be an important indicator in diseases such as diabetes. In such applications, the material could provide two different indications at once — for example, changing in color depending on the presence of a specific compound, such as glucose in the blood, while changing in intensity depending on the viscosity.

MOF materials were first produced about 15 years ago, but their amazing porosity has made them a very active area of research. Although they simply look like little rocks, the sponge-like structures have so much internal surface area that one gram of the material, if unfolded, would cover a football field, Dincã says.

The material’s inner pores are about one nanometer (one billionth of a meter) across, making them “about the size of a small molecule” and well suited as molecular detectors, he says.

The new material is based on the MIT team’s discovery of a way to bind a certain type of fluorescent molecules, also known as chromophores, onto the MOF’s metal atoms. While these particular chromophores cannot emit light by themselves, they become fluorescent when bunched together. When in bunches or clumps, however, target molecules cannot reach them and therefore cannot be detected. Attaching the chromophores to nodes of the MOF’s open framework keeps them from clumping, while also keeping them close to the empty pores so they can easily respond to the arrival of a target molecule.

Ben Zhong Tang, a professor of chemistry at the Hong Kong University of Science and Technology, who was not involved in this work, says the MIT researchers have taken “an elegant approach” to producing functional MOFs, and “have already demonstrated the utility of their MOFs for detection and differentiation of normally difficult-to-distinguish” molecules called volatile organic compounds.

Tang says the new system still needs further refinement to improve the efficiency of production, which he says should be easily accomplished. Once that is achieved, he says, it could find many uses. “Many more applications may be envisioned: For example, the MOFs may serve as smart vehicles and monitors for controlled drug deliveries,” with the additional benefit that “the fluorescence should be gradually weakened in intensity along with progressive release of the drugs, thus enabling in situ real-time monitoring of the drug release profiles.” But for now, he says, “the work is excellent in terms of proof of concept.”

The work was supported by MIT’s Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, and by the National Science Foundation.

Caroline McCall | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>