Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why a giraffe cannot walk like a dachshund

06.03.2009
Scientists at Jena University explore human locomotion within EU project

At first they can hardly move forward, then they start to crawl and finally - after having stood up straight by themselves for the first time - they are filled with sheer enthusiasm about walking.

"The way children learn how to walk is quite similar to the evolutionary transition from the four-legged to the two-legged gait", says Dr. André Seyfarth from the University of Jena.

Together with an international team of researchers he tries to find out how this transition works mechanically. Therefore a cooperation project has been started with colleagues from Switzerland, Belgium, Denmark and Canada. It is funded with EUR 2.7 million by the European Commission for the next four years. Dr. Seyfarth's team in Jena receives EUR 515.000 of it.

Locomorph is the new project's name - deriving from the words locomotion and morphology. This literally means shape of movement. And that is exactly what André Seyfarth aims at: "We want to understand the mechanical and neuronal communication in the moving leg - in order to copy it." The construction of modular walking robots which help to imitate the development from the four-legged to the two-legged locomotion is planned as the last of the project's three parts. But beforehand the scientists have to analyse and study movement as well as to develop computer models.

At the Jena Locomotion Laboratory now the movement of test persons on a treadmill is going to be examined. Specially fitted orthoses are also being used for that. They are normally used for supporting parts of the body that are limited in function, for example for stabilising joints after a sporting accident. "The mechanics of our orthoses have been rebuilt in such way", explains André Seyfarth, "that we can imitate typical movement programs from the outside. The body then can signal us if the programme is perceived in a positive or negative way". Thus the researchers are able to find out if this is the natural state already or if they must go on searching for the right solution. "So to speak, we go the other way around. We try to explain biological matters by identifying basic mechanisms and offering them to the body", says Seyfarth.

In addition to the analyses of the Jena team the colleagues in Belgium take similar measurements with lizards, primates and toddlers. "From this we hope for an exact image of the movement patterns at the transition from the four-legged to the two-legged gait", explains Seyfarth.

On the basis of these data the scientists want to develop a computer model which could then be converted into a technical system. Therefore several walking robots are constructed which allow the imaging and testing of such movement models. The advantage of a technical system is obvious for team leader André Seyfarth: It can be touched and changed, and it examines the reaction caused by the change. "In this way we come closer to the real processes of human motion step by step."

The project's goal is to create a tool by means of robotics which depicts and explains the different human and biological stages of development of the movement morphology. This makes it possible to develop individual therapies and prostheses for patients with motor dysfunctions or leg amputations. Each human being has a very individual gait. That is why Seyfarth considers the traditional method of comparing individual movement patterns to normative reference curves unfavourable. It simply cannot depict the individual motions of a certain body. "If a giraffe is forced to walk like a dachshund it will always remain unhappy since the giraffe simply cannot realise it", Seyfarth explains the problem.

"In four years", he hopes, "with the help of the research results, we might already have established a better basis for the treatment of motor disorders, for instance after an accident. Such treatment could take into consideration the individual morphological preconditions for the locomotion of a single patient."

Contact:
Dr. André Seyfarth
University of Jena
Institute of Sport Science
Dornburger Str. 23
D-07743 Jena
Phone: +49-3641-945730
Email: Andre.Seyfarth[at]uni-jena.de

Manuela Heberer | idw
Further information:
http://www.uni-jena.de/start_en.html

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>