Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why a giraffe cannot walk like a dachshund

06.03.2009
Scientists at Jena University explore human locomotion within EU project

At first they can hardly move forward, then they start to crawl and finally - after having stood up straight by themselves for the first time - they are filled with sheer enthusiasm about walking.

"The way children learn how to walk is quite similar to the evolutionary transition from the four-legged to the two-legged gait", says Dr. André Seyfarth from the University of Jena.

Together with an international team of researchers he tries to find out how this transition works mechanically. Therefore a cooperation project has been started with colleagues from Switzerland, Belgium, Denmark and Canada. It is funded with EUR 2.7 million by the European Commission for the next four years. Dr. Seyfarth's team in Jena receives EUR 515.000 of it.

Locomorph is the new project's name - deriving from the words locomotion and morphology. This literally means shape of movement. And that is exactly what André Seyfarth aims at: "We want to understand the mechanical and neuronal communication in the moving leg - in order to copy it." The construction of modular walking robots which help to imitate the development from the four-legged to the two-legged locomotion is planned as the last of the project's three parts. But beforehand the scientists have to analyse and study movement as well as to develop computer models.

At the Jena Locomotion Laboratory now the movement of test persons on a treadmill is going to be examined. Specially fitted orthoses are also being used for that. They are normally used for supporting parts of the body that are limited in function, for example for stabilising joints after a sporting accident. "The mechanics of our orthoses have been rebuilt in such way", explains André Seyfarth, "that we can imitate typical movement programs from the outside. The body then can signal us if the programme is perceived in a positive or negative way". Thus the researchers are able to find out if this is the natural state already or if they must go on searching for the right solution. "So to speak, we go the other way around. We try to explain biological matters by identifying basic mechanisms and offering them to the body", says Seyfarth.

In addition to the analyses of the Jena team the colleagues in Belgium take similar measurements with lizards, primates and toddlers. "From this we hope for an exact image of the movement patterns at the transition from the four-legged to the two-legged gait", explains Seyfarth.

On the basis of these data the scientists want to develop a computer model which could then be converted into a technical system. Therefore several walking robots are constructed which allow the imaging and testing of such movement models. The advantage of a technical system is obvious for team leader André Seyfarth: It can be touched and changed, and it examines the reaction caused by the change. "In this way we come closer to the real processes of human motion step by step."

The project's goal is to create a tool by means of robotics which depicts and explains the different human and biological stages of development of the movement morphology. This makes it possible to develop individual therapies and prostheses for patients with motor dysfunctions or leg amputations. Each human being has a very individual gait. That is why Seyfarth considers the traditional method of comparing individual movement patterns to normative reference curves unfavourable. It simply cannot depict the individual motions of a certain body. "If a giraffe is forced to walk like a dachshund it will always remain unhappy since the giraffe simply cannot realise it", Seyfarth explains the problem.

"In four years", he hopes, "with the help of the research results, we might already have established a better basis for the treatment of motor disorders, for instance after an accident. Such treatment could take into consideration the individual morphological preconditions for the locomotion of a single patient."

Contact:
Dr. André Seyfarth
University of Jena
Institute of Sport Science
Dornburger Str. 23
D-07743 Jena
Phone: +49-3641-945730
Email: Andre.Seyfarth[at]uni-jena.de

Manuela Heberer | idw
Further information:
http://www.uni-jena.de/start_en.html

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>