Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A giant puzzle with billions of pieces

21.12.2012
Bielefeld’s Center for Biotechnology and the Joint Genome Institute, USA, decipher genetic information of microbes in biogas plants

Day after day, legions of microorganisms work to produce energy from waste in biogas plants. Researchers from Bielefeld University’s Center for Biotechnology (CeBiTec) are taking a close look to find out which microbes do the best job. They are analysing the entire ge-netic information of the microbial communities in selected biogas plants up and down Germany.


Stained, they fluoresce under the microscope: a wide variety of microbes can be seen in a sample taken from a biogas plant. Researchers at Bielefeld University want to find out which ones do their job best.
Karsten Niehaus

From the beginning of 2013, the Californian Joint Genome Institute will undertake the sequencing required. The biocomputational analysis will be performed at CeBiTec. Not an easy task, since the data will be supplied in billions of fragments stemming in turn from hundreds of organisms. Piecing together this huge jigsaw puzzle will be painstaking work.

In Germany, there are more than 7,000 biogas plants which can supply over six million households with power. The plants are filled mostly with plant biomass like maize silage but also with agricultural waste materials like liquid manure and chicken manure. One of the key research questions is how the production of biogas can be optimised. For this reason, Bielefeld scientists Dr Alexander Sczyrba, Dr Andreas Schlüter, Dr Alexander Goesmann, Professor Dr Jens Stoye und Professor Dr Alfred Pühler want to know what microbes are responsible for the decomposition of biomass - and which of them do it best. “We are interested in discovering the microbiology that is really behind the processes going on in a biogas plant; what microor-ganisms play which role at which stage,” explains Andreas Schlüter, whose research at CeBiTec is in the field of biogas production.

First genome deciphered
The researchers’ work has already borne its first fruit. “At CeBiTec, we have managed to deci-pher the complete genome sequence of Methanoculleus bourgensis, a methane producer,” reports Professor Pühler. By doing so, Bielefeld has sequenced the first genome for a methane-producing archaeon from a biogas plant – a single-celled primordial bacterium which plays an important role in certain biogas plants. Now, the researchers want to go even further.
Putting the puzzle together
The project is part of the Community Sequencing Program, a public sequencing programme financed at the Joint Genome Institute by the US Department of Energy. While previous biogas studies have concentrated primarily on certain marker genes, now the entire genetic informa-tion of the microorganisms is to be studied. The American institute will produce more than one terabyte of sequence data for this, which is equivalent in volume to approximately 300 human genomes. This data will be supplied in a countless number of fragments, however, since even the most modern technology is not capable of reading all at once the millions of bases of which a microbial DNA molecule consists. Instead, the sequencing technologies supply vast quantities of overlapping sections of about 150 bases. The DNA sequences will then be returned to Bielefeld in billions of fragments, which is where Alexander Sczyrba’s Computa-tional Metagenomics team comes into play. They develop bioinformatic procedures for the reconstruction of genome sequences. Their task is to compare the data, recognise the overlaps and use them to reassemble the base sequence. “We are trying to complete a puzzle made up of billions of pieces, which also includes hundreds of different puzzles all mixed up,” explains Sczyrba.
Single-cell genomics promises new insights
Quite incidentally, the Bielefeld researchers will be breaking new ground in genomics. An estimated 99 per cent of all microorganisms cannot be cultivated in the laboratory. A brand new technology, single-cell genomics, is to provide insights here by determining the genome sequence from single microbial cells. Knowledge of the identity and functions of hitherto completely unknown microorganisms is expected to be gained. During the joint project, the Joint Genome Institute will sequence approximately 100 single-cell genomes.

The researchers have scheduled roughly two years for their project, in which also Bielefeld doctoral students of the Graduate Cluster in Industrial Biotechnology (CLIB) are involved. At the end, they hope to have discovered the optimal microbial community for biogas plants - and thus be in a position to make this process of generating energy even more efficient.

Background
Biogas plants produce methane through the fermentation of plant biomass, which can be used to generate power and heat. The decomposition of plant biomass and the production of biogas in agricultural biogas plants are brought about by microbes. This process, which is similar to what goes on in the digestive tract of cattle, has a neutral carbon dioxide balance and does not therefore contribute to global warming. Unlike other renewable energies, for example weather-dependent power sources like wind and solar, methane can be produced constantly and stored. This allows it to be converted into power or heat as required.
Contact:
Dr Alexander Sczyrba, Universität Bielefeld
CeBiTec / Faculty of Technology - Computational Metagenomics
Telephone: +49 521 106-2910
Email: asczyrba@cebitec.uni-bielefeld.de
Dr Andreas Schlüter, Bielefeld University
CeBiTec - Genome Research of Industrial Microorganisms
Telephone: +49 521 106-8757
Email: aschluet@cebitec.uni-bielefeld.de

Ingo Lohuis | idw
Further information:
http://www.uni-bielefeld.de
http://www.cebitec.uni-bielefeld.de/grim/index.php/research/metagenomes

More articles from Life Sciences:

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

nachricht Bio-fabrication of Artificial Blood Vessels with Laser Light
28.08.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>