Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Genetic Mutation Allows Hudson River Fish to Adapt to PCBs

A research group led by a New York University School of Medicine scientist discovered a genetic variant that allows a fish in the Hudson River to live in waters heavily polluted by PCBs.

In a study published in the February 18, 2011, online issue of Science, they report that a population of Hudson River fish apparently evolved rapidly in response to the toxic chemicals, which were first introduced in 1929, and were banned fifty years later. PCBs, or polychlorinated biphenyls, were used in hundreds of industrial and commercial applications, especially as electrical insulators.

“We’ve found evolutionary change going on very quickly due to toxic exposure, and just one gene is responsible for it,” says Isaac Wirgin, a population geneticist, associate professor of environmental medicine at NYU School of Medicine, and the study’s lead investigator. “There are not many examples of this in the scientific literature."

General Electric released approximately 1.3 million pounds of PCBs into the Hudson River from 1947 to 1976. The Atlantic tomcod, Microgadus tomcod, is a common bottom-feeding fish in the Hudson that is not usually eaten by humans. The fish, which typically reaches a length of 10 inches, had long been known to survive exposure to PCBs, and levels of the chemical in its liver are among the highest reported in nature. However, scientists did not understand the biological mechanism that allowed the tomcod to survive chemical exposures that kill most other fishes.

Dr. Wirgin and scientists at NOAA Fisheries Service in New Jersey and the Woods Hole Oceanographic Institution in Massachusetts spent four years capturing tomcod from contaminated and relatively clean areas of the Hudson River during the winter months, when tomcod spawn in the river. The fish were screened for genetic variants in a gene encoding a protein known to regulate the toxic effects of PCBs, which is called the aryl hydrocarbon receptor2, or AHR2. This gene also is involved in mediating the effects of other halogenated hydrocarbon compounds, a group that includes PCBs.

Slight alterations—the deletion of only six base pairs in DNA of the AHR2 gene—appear to protect tomcod from PCBs, according to the study. Normally, when unaltered AHR2 binds to PCBs, it triggers a cascade of reactions that transmit the toxic effects of the compound. However, the study found that PCBs bind poorly to the variant AHRs, which apparently blunts the chemicals’ effects.

Tomcod from cleaner waters occasionally carried mutant AHR2, suggesting that these variants existed in minor proportions prior to PCB pollution, says Dr. Wirgin. After the chemical was released, tomcod carrying the mutation had an advantage over others in the population because PCBs otherwise lead to lethal heart defects in young fish. The study’s findings suggest that this advantage drove genetic changes in these fish over some fifty years. “We think of evolution as something that happens over thousands of generations,” says Dr. Wirgin. “But here it happened remarkably quickly.”

The study co-authors are: Nirmal K. Roy and Matthew Loftus, the NYU School of Medicine; R. Christopher Chambers, the NOAA Fisheries Service, Highland, New Jersey; and Diana G. Franks and Mark E. Hahn, Woods Hole Oceanographic Institution.

About NYU School of Medicine:
NYU School of Medicine is one of the nation’s preeminent academic institutions dedicated to achieving world class medical educational excellence. For 170 years, NYU School of Medicine has trained thousands of physicians and scientists who have helped to shape the course of medical history and enrich the lives of countless people. An integral part of NYU Langone Medical Center, the School of Medicine at its core is committed to improving the human condition through medical education, scientific research and direct patient care. The School also maintains academic affiliations with area hospitals, including Bellevue Hospital, one of the nation’s finest municipal hospitals where its students, residents and faculty provide the clinical and emergency care to New York City’s diverse population, which enhances the scope and quality of their medical education and training. Additional information about the NYU School of Medicine is available at

Lorinda Klein | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Here comes the long-sought-after iron-munching microbe
25.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Novel method to benchmark and improve the performance of protein measumeasurement techniques
25.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>