Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Genetic Mutation Allows Hudson River Fish to Adapt to PCBs

18.02.2011
A research group led by a New York University School of Medicine scientist discovered a genetic variant that allows a fish in the Hudson River to live in waters heavily polluted by PCBs.

In a study published in the February 18, 2011, online issue of Science, they report that a population of Hudson River fish apparently evolved rapidly in response to the toxic chemicals, which were first introduced in 1929, and were banned fifty years later. PCBs, or polychlorinated biphenyls, were used in hundreds of industrial and commercial applications, especially as electrical insulators.

“We’ve found evolutionary change going on very quickly due to toxic exposure, and just one gene is responsible for it,” says Isaac Wirgin, a population geneticist, associate professor of environmental medicine at NYU School of Medicine, and the study’s lead investigator. “There are not many examples of this in the scientific literature."

General Electric released approximately 1.3 million pounds of PCBs into the Hudson River from 1947 to 1976. The Atlantic tomcod, Microgadus tomcod, is a common bottom-feeding fish in the Hudson that is not usually eaten by humans. The fish, which typically reaches a length of 10 inches, had long been known to survive exposure to PCBs, and levels of the chemical in its liver are among the highest reported in nature. However, scientists did not understand the biological mechanism that allowed the tomcod to survive chemical exposures that kill most other fishes.

Dr. Wirgin and scientists at NOAA Fisheries Service in New Jersey and the Woods Hole Oceanographic Institution in Massachusetts spent four years capturing tomcod from contaminated and relatively clean areas of the Hudson River during the winter months, when tomcod spawn in the river. The fish were screened for genetic variants in a gene encoding a protein known to regulate the toxic effects of PCBs, which is called the aryl hydrocarbon receptor2, or AHR2. This gene also is involved in mediating the effects of other halogenated hydrocarbon compounds, a group that includes PCBs.

Slight alterations—the deletion of only six base pairs in DNA of the AHR2 gene—appear to protect tomcod from PCBs, according to the study. Normally, when unaltered AHR2 binds to PCBs, it triggers a cascade of reactions that transmit the toxic effects of the compound. However, the study found that PCBs bind poorly to the variant AHRs, which apparently blunts the chemicals’ effects.

Tomcod from cleaner waters occasionally carried mutant AHR2, suggesting that these variants existed in minor proportions prior to PCB pollution, says Dr. Wirgin. After the chemical was released, tomcod carrying the mutation had an advantage over others in the population because PCBs otherwise lead to lethal heart defects in young fish. The study’s findings suggest that this advantage drove genetic changes in these fish over some fifty years. “We think of evolution as something that happens over thousands of generations,” says Dr. Wirgin. “But here it happened remarkably quickly.”

The study co-authors are: Nirmal K. Roy and Matthew Loftus, the NYU School of Medicine; R. Christopher Chambers, the NOAA Fisheries Service, Highland, New Jersey; and Diana G. Franks and Mark E. Hahn, Woods Hole Oceanographic Institution.

About NYU School of Medicine:
NYU School of Medicine is one of the nation’s preeminent academic institutions dedicated to achieving world class medical educational excellence. For 170 years, NYU School of Medicine has trained thousands of physicians and scientists who have helped to shape the course of medical history and enrich the lives of countless people. An integral part of NYU Langone Medical Center, the School of Medicine at its core is committed to improving the human condition through medical education, scientific research and direct patient care. The School also maintains academic affiliations with area hospitals, including Bellevue Hospital, one of the nation’s finest municipal hospitals where its students, residents and faculty provide the clinical and emergency care to New York City’s diverse population, which enhances the scope and quality of their medical education and training. Additional information about the NYU School of Medicine is available at http://school.med.nyu.edu/.

Lorinda Klein | Newswise Science News
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>