Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A genetic basis for schizophrenia

23.07.2009
Schizophrenia is a severely debilitating psychiatric disease that is thought to have its roots in the development of the nervous system; however, major breakthroughs linking its genetics to diagnosis, prognosis and treatment are still unrealized.

Jill Morris, PhD assistant professor of Pediatrics at Northwestern University's Feinberg School of Medicine and a researcher in the Human Molecular Genetics Program of Children's Memorial Research Center studies a gene that is involved in susceptibility to schizophrenia, Disc1 (Disrupted-In-Schizophrenia 1).

Two recent publications by Morris and colleagues focus on the role of Disc1 in development, particularly the migration of cells to their proper location in the brain and subsequent differentiation into their intended fate. During development, cells need to properly migrate to their final destination in order to develop into the appropriate cell-type, integrate into the corresponding network of cells and function properly. Disruption of cell migration can lead to inappropriate cell development and function, resulting in disease.

The first paper, published in the July 2009 online issue of the journal Development, followed the role of Disc1 in cranial neural crest (CNC) cells, which are multi-potent cells that give rise to multiple cell types including craniofacial cartilage and the peripheral nervous system during development. They also are similar to neurons in their high mobility, response to signals and cellular origin. The Morris laboratory determined that Disc1 regulates two stem cell maintenance factors that have many functions in CNC cells, including the maintenance of precursor pools, timing of migration onset and the induction of cell differentiation. The authors showed that Disc1 disruption results in increased expression of these factors, leading to hindered cell migration and a change in cell fate. "This research indicates that Disc1 may be involved in regulating stem cells and their fate," says Morris.

The second paper, published in the June 2009 online issue of Human Molecular Genetics, studied the hippocampus, a brain area that is involved in learning and memory, and is also associated with the pathology of schizophrenia. Disc1 is highly expressed in the hippocampus, particularly the dentate gyrus, which is considered the gateway to the hippocampus. In this study, the authors decreased Disc1 expression using RNA interference in the developing mouse hippocampus. The loss of Disc1 resulted in hindered migration of dentate gyrus granule cells to their proper location in the brain. "Improper migration of hippocampal neurons may result in altered connectivity in the brain," says Morris.

Co-authors on these publications are (Development): Catherine Drerup, PhD, Heather Wiora and Jacek Topczewski, PhD; and (Human Molecular Genetics): Kate Meyer. Drerup is a former graduate student and Meyer a current graduate student, both in the Morris laboratory. Funding was provided by the McKnight Brain Disorders Award; the National Alliance for Research on Schizophrenia and Depression; the National Institute of Mental Health; and the Illinois Department of Public Aid.

Children's Memorial Research Center is the research arm of Children's Memorial Hospital, the pediatric teaching hospital for Northwestern University's Feinberg School of Medicine. The research center is also one of 29 interdisciplinary research centers and institutes of the Feinberg School, where principal investigators who are part of the research center are full-time faculty members. Built upon a team approach, the research center generates knowledge that will lead to cures for the diseases of children with additional focus on the pediatric precursors of adult diseases. The research center actively encourages a synergy of ideas among physician scientists, basic scientists, technicians, nurses and trainees in various disciplines. Its thematic research programs bridge gaps between the biomedical, clinical and social sciences and provide an environment to accomplish common goals.

For more information contact Peggy Jones, Children's Memorial Research Center at 773.755.6341 or pmjones@childrensmemorial.org.

Peggy Jones | EurekAlert!
Further information:
http://www.childrensmemorial.org

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>