Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A genetic basis for schizophrenia

23.07.2009
Schizophrenia is a severely debilitating psychiatric disease that is thought to have its roots in the development of the nervous system; however, major breakthroughs linking its genetics to diagnosis, prognosis and treatment are still unrealized.

Jill Morris, PhD assistant professor of Pediatrics at Northwestern University's Feinberg School of Medicine and a researcher in the Human Molecular Genetics Program of Children's Memorial Research Center studies a gene that is involved in susceptibility to schizophrenia, Disc1 (Disrupted-In-Schizophrenia 1).

Two recent publications by Morris and colleagues focus on the role of Disc1 in development, particularly the migration of cells to their proper location in the brain and subsequent differentiation into their intended fate. During development, cells need to properly migrate to their final destination in order to develop into the appropriate cell-type, integrate into the corresponding network of cells and function properly. Disruption of cell migration can lead to inappropriate cell development and function, resulting in disease.

The first paper, published in the July 2009 online issue of the journal Development, followed the role of Disc1 in cranial neural crest (CNC) cells, which are multi-potent cells that give rise to multiple cell types including craniofacial cartilage and the peripheral nervous system during development. They also are similar to neurons in their high mobility, response to signals and cellular origin. The Morris laboratory determined that Disc1 regulates two stem cell maintenance factors that have many functions in CNC cells, including the maintenance of precursor pools, timing of migration onset and the induction of cell differentiation. The authors showed that Disc1 disruption results in increased expression of these factors, leading to hindered cell migration and a change in cell fate. "This research indicates that Disc1 may be involved in regulating stem cells and their fate," says Morris.

The second paper, published in the June 2009 online issue of Human Molecular Genetics, studied the hippocampus, a brain area that is involved in learning and memory, and is also associated with the pathology of schizophrenia. Disc1 is highly expressed in the hippocampus, particularly the dentate gyrus, which is considered the gateway to the hippocampus. In this study, the authors decreased Disc1 expression using RNA interference in the developing mouse hippocampus. The loss of Disc1 resulted in hindered migration of dentate gyrus granule cells to their proper location in the brain. "Improper migration of hippocampal neurons may result in altered connectivity in the brain," says Morris.

Co-authors on these publications are (Development): Catherine Drerup, PhD, Heather Wiora and Jacek Topczewski, PhD; and (Human Molecular Genetics): Kate Meyer. Drerup is a former graduate student and Meyer a current graduate student, both in the Morris laboratory. Funding was provided by the McKnight Brain Disorders Award; the National Alliance for Research on Schizophrenia and Depression; the National Institute of Mental Health; and the Illinois Department of Public Aid.

Children's Memorial Research Center is the research arm of Children's Memorial Hospital, the pediatric teaching hospital for Northwestern University's Feinberg School of Medicine. The research center is also one of 29 interdisciplinary research centers and institutes of the Feinberg School, where principal investigators who are part of the research center are full-time faculty members. Built upon a team approach, the research center generates knowledge that will lead to cures for the diseases of children with additional focus on the pediatric precursors of adult diseases. The research center actively encourages a synergy of ideas among physician scientists, basic scientists, technicians, nurses and trainees in various disciplines. Its thematic research programs bridge gaps between the biomedical, clinical and social sciences and provide an environment to accomplish common goals.

For more information contact Peggy Jones, Children's Memorial Research Center at 773.755.6341 or pmjones@childrensmemorial.org.

Peggy Jones | EurekAlert!
Further information:
http://www.childrensmemorial.org

More articles from Life Sciences:

nachricht Charge Order and Electron Localization in a Molecule-Based Solid
22.01.2018 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew

22.01.2018 | Agricultural and Forestry Science

Two dimensional circuit with magnetic quasi-particles

22.01.2018 | Physics and Astronomy

Electrical fields drive nano-machines a 100,000 times faster than previous methods

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>