Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gene for Lou Gehrig's disease and frontotemporal dementia identified

22.09.2011
Frontotemporal dementia and amyotrophic lateral sclerosis, also known as Lou Gehrig's disease -- two fatal neurodegenerative disease with distinct symptoms -- are triggered by a common mutation in many cases, according to researchers who say they have identified the mutated gene.

In the study, reported in the September 21 online issue of Neuron, the scientists described the discovery of a genetic mutation that is accountable for almost 12 percent of familial FTD and more than 22 percent of familial ALS samples studied.

They also report that the defect is the strongest genetic risk factor found to date for the more common, non-inherited, sporadic forms of these diseases. It was found in 3 percent of sporadic FTD and 4 percent of sporadic ALS samples in the largest clinical patient series.

The study was led by scientists at the Mayo Clinic in Florida, in collaboration with researchers at UCSF, the University of British Columbia and UCLA. The finding emerged from the identification and study of a family stricken by both ALS and FTD, reported last year. In that study, led by the UCSF scientists and published in the Journal of Neurology, Neurosurgery and Psychiatry, the researchers honed in on the region in which the gene was located.

"Both clinically and at the molecular level this discovery is going to significantly improve our understanding of these diseases," said co-author Adam Boxer, MD, PhD, of the UCSF Memory and Aging Center, the lead author on the 2010 paper. The discovery makes it possible to develop a diagnostic test for the mutation, as well as to create animal models that may be used to help unravel the molecular mysteries connecting the mutation to the diseases, he said.

In the current study, a detailed molecular genetic characterization of the family that Boxer described was done in the laboratory of senior author Rosa Rademakers, PhD, from the Mayo Clinic. She and colleagues identified the gene and the specific mutation within it.

The mutation consists of from hundreds to thousands of extra copies of a six-letter DNA sequence GGGGCC strung end to end within a region of human chromosome nine. The mutation occurs within a gene of unknown function called C9ORF72.

After identifying the mutation, the Mayo researchers searched for it in DNA from other patients with both familial and sporadic forms of the diseases, where they found the strong associations.

FTD is characterized by disturbances in decision making, language skills, behavior and emotional expression, and is as common as Alzheimer's disease in people younger than 65, according to Boxer. ALS is a neuromuscular disease, leading to muscle paralysis and respiratory failure, often within three to five years. However, it is not unusual for patients diagnosed with one of the two diseases to exhibit symptoms of the other.

Since 2006, six separate groups have reported evidence for a genetic link between the disorders and the same chromosomal region. In the study led by Boxer last year, the researchers described clinical aspects of the disease within the family, and homed in more closely to the gene than others had.

The pattern of protein deposition in the brains of family members in the study may eventually shed light on common aspects of the neurodegenerative process that occurs in both diseases, Boxer said.

There is only one standard medical treatment for ALS, riluzole, which extend life for about six months, he said.

There is no known effective treatment to slow FTD. However, neurologists have generally become much better at recognizing the degenerative disorder, according to Boxer.

Boxer and Bruce Miller, MD, the director of the UCSF Memory and Aging Center and a co-author of both studies, are leaders in FTD research, diagnosis and patient care.

"Ten years ago some neurologists did not acknowledge the existence of FTD," Boxer says. "Today we are much better at diagnosing the disease, although sometimes it still takes an expert to distinguish it from Alzheimer's or from psychiatric disorders.

"We're actively trying to develop treatments for FTD, and we believe this discovery will pave the way for major advances in these efforts."

The researchers used a technique called linkage analysis to narrow the search for the gene by comparing affected and unaffected family members. Another group of scientists -- reporting in the same online edition of Neuron on the same gene -- found that C9ORF72 emerged as being significantly associated with FTD and ALS in a genome-wide scan of patients in Finland.

The Mayo portion of the study was funded by the National Institutes of Health and the ALS association (ALSA). The UCSF portion was funded by the NIH, the John Douglas French Foundation; the Hellman Family Foundation and the Tau Research Consortium and the Larry Hillblom Foundation and the state of California.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Related links:

UCSF Memory and Aging Center
http://memory.ucsf.edu/

Jennifer O'Brien | EurekAlert!
Further information:
http://www.ucsf.edu

Further reports about: Alzheimer Boxer DNA FTD Neuron brain aging family members psychiatric disorder

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>