Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gene linked to disease found to play a critical role in normal memory development

13.08.2014

It has been more than 20 years since scientists discovered that mutations in the gene huntingtin cause the devastating progressive neurological condition Huntington's disease, which involves involuntary movements, emotional disturbance and cognitive impairment. Surprisingly little, however, has been known about the gene's role in normal brain activity.

Now, a study from The Scripps Research Institute's (TSRI's) Florida campus and Columbia University shows it plays a critical role in long-term memory.

"We found that huntingtin expression levels are necessary for what is known as long-term synaptic plasticity—the ability of the synapses to grow and change—which is critical to the formation of long-term memory," said TSRI Assistant Professor Sathyanarayanan V. Puthanveettil, who led the study with Nobel laureate Eric Kandel of Columbia University.

In the study, published recently by the journal PLOS ONE, the team identified an equivalent of the human huntingtin protein in the marine snail Aplysia, a widely used animal model in genetic studies, and found that, just like its human counterpart, the protein in Aplysia is widely expressed in neurons throughout the central nervous system.

... more about:
»Health »Huntington's »RNAs »Scripps »TSRI »neurons

Using cellular models, the scientists studied what is known as the sensory-to-motor neuron synapse of Aplysia—in this case, gill withdrawal, a defensive move that occurs when the animal is disturbed.

The study found that the expression of messenger RNAs of huntingtin—messenger RNAs are used to produce proteins from instructions coded in genes—is increased by serotonin, a neurotransmitter released during learning in Aplysia. After knocking down production of the huntingtin protein, neurons failed to function normally.

"During the learning, production of the huntingtin mRNAs is increased both in pre- and post-synaptic neurons—that is a new finding," Puthanveettil said. "And if you block production of the protein either in pre- or post-synaptic neuron, you block formation of memory."

The findings could have implications for the development of future treatments of Huntington's disease. While the full biological functions of the huntingtin protein are not yet fully understood, the results caution against a therapeutic approach that attempts to eliminate the protein entirely.

###

The first author of the study, "Huntingtin Is Critical Both Pre- and Postsynaptically for Long-Term Learning-Related Synaptic Plasticity in Aplysia," is Yun-Beom Choi of Columbia University. Other authors include Beena M. Kadakkuzha, Xin-An Liu and Komolitdin Akhmedov of TSRI. For more information on the study, see http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0103004

The work was supported by the Howard Hughes Medical Institute, the National Institutes of Health (Grant NS053415), the Whitehall Foundation and the State of Florida.

Eric Sauter | Eurek Alert!
Further information:
http://www.scripps.edu

Further reports about: Health Huntington's RNAs Scripps TSRI neurons

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>