Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gene that fights cancer, but causes it too

17.05.2011
Over-activation of a single gene promotes leukemia, but its loss causes liver cancer

An international team of researchers, led by scientists at the University of California, San Diego School of Medicine, and the Eastern Hepatobiliary Surgery Hospital in China, say a human gene implicated in the development of leukemia also acts to prevent cancer of the liver.


In this low-magnification micrograph, normal liver architecture is disrupted by hepatocellular carcinoma, the most common type of liver cancer. Fibrotic late-stage cirrhosis is stained blue; tell-tale Mallory bodies (keratin filament proteins) are stained pink. Credit: UC San Diego School of Medicine

Writing in the May 17 issue of the journal Cancer Cell, Gen-Sheng Feng, PhD, UCSD professor of pathology, and colleagues in San Diego, Shanghai and Turin report that an enzyme produced by the human gene PTPN11 appears to help protect hepatocytes (liver cells) from toxic damage and death. Conversely, the same enzyme, called Shp2, is a known factor in the development of several types of leukemia.

"The new function for PTPN11/Shp2 as a tumor suppressor in hepatocellular carcinoma (HCC) stands in contrast to its known oncogenic effect in leukemogenesis," said Feng. "It's a surprising finding, but one that we think provides a fresh view of oncogenesis. The same gene can have oncogenic or anti-oncogenic effects, depending upon cellular context."

Previous studies had determined that PTPN11 was a proto-oncogene. That is, dominant active mutations in the gene had been identified in several types of leukemia patients, as was an over-expression of the gene product Shp2. Feng and colleagues looked to see what happened when Shp2 was knocked out specifically in hepatocytes in a mouse model.

The result wasn't good: The mice got liver cancer.

Strikingly, deficient or low expression of PTPN11 was detected in a sub-fraction of human HCC patient samples by researchers at the Eastern Hepatobiliary Surgery Hospital in Shanghai, China. That work was led by Hongyang Wang, MD, PhD and a professor of molecular biology.

"The liver is a most critical metabolic organ in mammals, including humans," said Feng. "It has a unique regenerative capacity that allows it to resist damage by food toxins, viruses and alcohol. Shp2 normally acts to protect hepatocytes. Removing Shp2 from these liver cells leads to their death, which in turn triggers compensatory regeneration and inflammatory responses. That results in enhanced development of HCC induced by a chemical carcinogen."

Feng said the findings highlight the unique mechanism underlying HCC, but more broadly, they reveal new complexities in how different types of cancer begin. Indeed, the researchers say their work also uncovered pro- and anti-oncogenic activities in a gene transcription factor called Stat3.

"Our results indicate a requirement for Stat3 in promoting HCC development, which is consistent with the literature saying Stat3 is pro-oncogenic. But we also found that deletion of Stat3 in hepatocytes resulted in a modest, but significant, increase in HCC."

Feng said the findings underscore the need for caution in designing therapeutic strategies for treating HCCs and other types of cancers because the answer might also be the problem.

Funding for this study came, in part, from the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health and the National Natural Science Foundation of China.

Co-authors of the paper include Emilie A. Bard-Chapeau, UCSD Department of Pathology and Division of Biological Sciences and Sanford/Burnham Medical Institute, La Jolla; Shuangwei Li, Sharon S. Zhang, Helen H. Zhu, Diane D. Fang and Nissi M. Varki, UCSD Department of Pathology and Division of Biological Sciences; Jin Ding, Tao Han and Hongyang Wang, Laboratory of Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; Frederic Princen and Beatrice Bailly-Maitre, Sanford/Burnham Medical Research Institute; Valeria Poli, Department of Genetics, Biology and Biochemistry, University of Turin, Italy.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>