Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A gene that fights cancer, but causes it too

17.05.2011
Over-activation of a single gene promotes leukemia, but its loss causes liver cancer

An international team of researchers, led by scientists at the University of California, San Diego School of Medicine, and the Eastern Hepatobiliary Surgery Hospital in China, say a human gene implicated in the development of leukemia also acts to prevent cancer of the liver.


In this low-magnification micrograph, normal liver architecture is disrupted by hepatocellular carcinoma, the most common type of liver cancer. Fibrotic late-stage cirrhosis is stained blue; tell-tale Mallory bodies (keratin filament proteins) are stained pink. Credit: UC San Diego School of Medicine

Writing in the May 17 issue of the journal Cancer Cell, Gen-Sheng Feng, PhD, UCSD professor of pathology, and colleagues in San Diego, Shanghai and Turin report that an enzyme produced by the human gene PTPN11 appears to help protect hepatocytes (liver cells) from toxic damage and death. Conversely, the same enzyme, called Shp2, is a known factor in the development of several types of leukemia.

"The new function for PTPN11/Shp2 as a tumor suppressor in hepatocellular carcinoma (HCC) stands in contrast to its known oncogenic effect in leukemogenesis," said Feng. "It's a surprising finding, but one that we think provides a fresh view of oncogenesis. The same gene can have oncogenic or anti-oncogenic effects, depending upon cellular context."

Previous studies had determined that PTPN11 was a proto-oncogene. That is, dominant active mutations in the gene had been identified in several types of leukemia patients, as was an over-expression of the gene product Shp2. Feng and colleagues looked to see what happened when Shp2 was knocked out specifically in hepatocytes in a mouse model.

The result wasn't good: The mice got liver cancer.

Strikingly, deficient or low expression of PTPN11 was detected in a sub-fraction of human HCC patient samples by researchers at the Eastern Hepatobiliary Surgery Hospital in Shanghai, China. That work was led by Hongyang Wang, MD, PhD and a professor of molecular biology.

"The liver is a most critical metabolic organ in mammals, including humans," said Feng. "It has a unique regenerative capacity that allows it to resist damage by food toxins, viruses and alcohol. Shp2 normally acts to protect hepatocytes. Removing Shp2 from these liver cells leads to their death, which in turn triggers compensatory regeneration and inflammatory responses. That results in enhanced development of HCC induced by a chemical carcinogen."

Feng said the findings highlight the unique mechanism underlying HCC, but more broadly, they reveal new complexities in how different types of cancer begin. Indeed, the researchers say their work also uncovered pro- and anti-oncogenic activities in a gene transcription factor called Stat3.

"Our results indicate a requirement for Stat3 in promoting HCC development, which is consistent with the literature saying Stat3 is pro-oncogenic. But we also found that deletion of Stat3 in hepatocytes resulted in a modest, but significant, increase in HCC."

Feng said the findings underscore the need for caution in designing therapeutic strategies for treating HCCs and other types of cancers because the answer might also be the problem.

Funding for this study came, in part, from the National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health and the National Natural Science Foundation of China.

Co-authors of the paper include Emilie A. Bard-Chapeau, UCSD Department of Pathology and Division of Biological Sciences and Sanford/Burnham Medical Institute, La Jolla; Shuangwei Li, Sharon S. Zhang, Helen H. Zhu, Diane D. Fang and Nissi M. Varki, UCSD Department of Pathology and Division of Biological Sciences; Jin Ding, Tao Han and Hongyang Wang, Laboratory of Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China; Frederic Princen and Beatrice Bailly-Maitre, Sanford/Burnham Medical Research Institute; Valeria Poli, Department of Genetics, Biology and Biochemistry, University of Turin, Italy.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>