Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A one way gate for tau proteins

27.10.2011
Scientists from Bonn have discovered a possible mechanism of Alzheimer disease

For a nerve cell to function properly, each protein must be in the right place.

The tau protein, for example, has to be located in the axons - the long projections of nerve cells. An early sign of a number of neurodegenerative diseases, in particular Alzheimer disease, is the redistribution of tau from the axons to the cell body.

Scientists at the German Center for Neurodegenerative Diseases (DZNE) and the research center caesar, lead by Prof. Eckhard Mandelkow, have now found an explanation for this mislocalization. They have discovered a new cellular mechanism that keeps tau protein in the axons in healthy cells and show how this process malfunctions in certain diseases. "The mechanism functions like a one-way gate at the axon junction, through which tau may enter the axon but which would prevent its return to the cell body" said Mandelkow. "In Alzheimer disease and other so-called tauopathies, tau is altered so that it can pass through the gate in both directions and thus becomes mislocalized." The work was published on October 18, 2011 online in the EMBO Journal.

"Tauopathies" is an umbrella term for a number of neurodegenerative diseases, of which Alzheimer disease is the most prominent representative. In normal cells, tau is enriched in the axons – cellular processes through which neuronal signals are passed on to downstream cells. In tauopathies, however, the protein is distributed throughout the cell body and its dendrites, the recipients of neural signals. This mislocalization of tau is a first and very crucial step in the pathology of the diseases. In previous work the teams of Eva and Eckhard Mandelkow have found evidence that the accumulation of tau in dendrites interferes with the neuronal contacts and thereby affects signal transmission between nerve cells. In the long term, this leads to the degeneration and loss of cells. The researchers thus wanted to investigate how tau is maintained in the axon in healthy cells and why this process is impaired in tauopathies.

To explore this issue in more detail, the scientists used a new technology that allows tracking the distribution of proteins within a cell. To this end, they coupled the tau protein with a photoactivated fluorescent dye and introduced it into neuronal cells. When a certain area of the cell is then stimulated briefly with a laser, the fluorescence properties of the tau protein change from green to red, so that its further spreading within the cell can be observed. The researchers showed that tau, once in the normal axon, is virtually trapped there. At the axon initial segment, where the axon branches off from the cell body, the scientists discovered a barrier that prevents tau protein from moving back from the axon into the cell body.

In healthy cells, tau binds to and stabilizes microtubules, components of the cytoskeleton, in the axons of the cells. In Alzheimer disease and other tauopathies, tau is covered with too many phosphate groups. This excessive phosphorylation causes removal of tau from the cytoskeleton and aggregation.

Could this process also contribute to the mislocalization of tau to the cell body? Could it be that the barrier at the initial axonal segment is only effective when tau is firmly bound to microtubules? Through further experiments the researchers were able to unambiguously answer these questions with "yes" - tau that is highly phosphorylated is able to leave the axon and accumulate in the cell body. "It has been recognized for a long time that tau protein is mislocalized in tauopathies. Moreover, the fact that tau bears too many phosphate groups in these diseases is common knowledge. Our studies now show that there is a connection between the two processes. Tau is sorted incorrectly because it is excessively phosphorylated, "said Mandelkow. Further studies are underway to evaluate the cause of this underlying hyperphosphorylation.

Original publication:
Xiaoyu Li, Yatender Kumar, Hans Zempel, Eva-Maria Mandelkow, Jacek Biernat and Eckhard Mandelkow. Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. The EMBO Journal, advanced online publication: 18.10.2011
Contact information:
Dr. Katrin Weigmann
German Center for Neurodegenerative Diseases (DZNE)
Press and Public Relations
Phone: +49 228 43302 /263
Mobile: +49 173 – 5471350
Email: katrin.weigmann@dzne.de

Katrin Weigmann | idw
Further information:
http://www.dzne.de

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>