Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A first in front line immunity research

Monash University researchers have gained new insight into the early stages of our immune response, providing novel pathways to develop treatments for diseases from multiple sclerosis to cancer.

In a study published today in Nature Immunology, a team of researchers led by Professor Paul Hertzog, of the Monash Institute of Medical Research (MIMR) and Professor Jamie Rossjohn, of the School of Biomedical Sciences, have characterised for the first time how interferon beta (IFNâ) proteins bind to cells and activate an immune response.

Produced when viral and bacterial infections are detected, interferon proteins are vital to the body's defences. They activate immune cells, such as macrophages, can interfere with virus replication, and can boost cells' resilience to infection. They also enhance later immune responses to cancers and other stresses.

There are at least 20 subtypes of interferons that are produced at different stages of the immune response. They appear to have different functions, but these functions and their triggers are generally not well understood. The mapping of INFâ - cell interaction is a breakthrough in the field.

Professor Hertzog of MIMR's Centre for Innate Immunity and Infectious Diseases said interferon function was vital for developing and refining therapies for incurable diseases such as lupus and multiple sclerosis.

"Interferon therapy is useful in treating a number of diseases; however these treatments have dose-limiting side effects. Further, interferons appear to drive some autoimmune diseases, raising the prospect of interferon blockers as treatment," Professor Hertzog said.

"The more refined our understanding of interferon function, the more we can tailor treatments to optimise effectiveness - whether by boosting or blocking their actions."

Lead author on the paper, Dr Nicole de Weerd, also of the Centre for Innate Immunity and Infectious Diseases, said the research provided new pathways for rational drug design.

"We found that when IFNâ binds to a cell, it transmits an unusual signal that seems linked to some of the toxic side effects of interferon therapy, like sepsis. This provides a promising avenue to pursue more selective activation of interferon action," Dr de Weerd said.

Professor Rossjohn and Julian Vivian from the Department of Biochemistry and Molecular Biology collaborated closely on determining the IFNâ interactions at the molecular level.

"During this seven-year study, we have had great support from the Australian Synchrotron," Professor Rossjohn said.

The research was supported by the Australian Research Council and the National Health and Medical Research Council of Australia.

Emily Walker | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>