Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A first in front line immunity research

22.07.2013
Monash University researchers have gained new insight into the early stages of our immune response, providing novel pathways to develop treatments for diseases from multiple sclerosis to cancer.

In a study published today in Nature Immunology, a team of researchers led by Professor Paul Hertzog, of the Monash Institute of Medical Research (MIMR) and Professor Jamie Rossjohn, of the School of Biomedical Sciences, have characterised for the first time how interferon beta (IFNâ) proteins bind to cells and activate an immune response.

Produced when viral and bacterial infections are detected, interferon proteins are vital to the body's defences. They activate immune cells, such as macrophages, can interfere with virus replication, and can boost cells' resilience to infection. They also enhance later immune responses to cancers and other stresses.

There are at least 20 subtypes of interferons that are produced at different stages of the immune response. They appear to have different functions, but these functions and their triggers are generally not well understood. The mapping of INFâ - cell interaction is a breakthrough in the field.

Professor Hertzog of MIMR's Centre for Innate Immunity and Infectious Diseases said interferon function was vital for developing and refining therapies for incurable diseases such as lupus and multiple sclerosis.

"Interferon therapy is useful in treating a number of diseases; however these treatments have dose-limiting side effects. Further, interferons appear to drive some autoimmune diseases, raising the prospect of interferon blockers as treatment," Professor Hertzog said.

"The more refined our understanding of interferon function, the more we can tailor treatments to optimise effectiveness - whether by boosting or blocking their actions."

Lead author on the paper, Dr Nicole de Weerd, also of the Centre for Innate Immunity and Infectious Diseases, said the research provided new pathways for rational drug design.

"We found that when IFNâ binds to a cell, it transmits an unusual signal that seems linked to some of the toxic side effects of interferon therapy, like sepsis. This provides a promising avenue to pursue more selective activation of interferon action," Dr de Weerd said.

Professor Rossjohn and Julian Vivian from the Department of Biochemistry and Molecular Biology collaborated closely on determining the IFNâ interactions at the molecular level.

"During this seven-year study, we have had great support from the Australian Synchrotron," Professor Rossjohn said.

The research was supported by the Australian Research Council and the National Health and Medical Research Council of Australia.

Emily Walker | EurekAlert!
Further information:
http://www.monash.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>