Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A first in front line immunity research

Monash University researchers have gained new insight into the early stages of our immune response, providing novel pathways to develop treatments for diseases from multiple sclerosis to cancer.

In a study published today in Nature Immunology, a team of researchers led by Professor Paul Hertzog, of the Monash Institute of Medical Research (MIMR) and Professor Jamie Rossjohn, of the School of Biomedical Sciences, have characterised for the first time how interferon beta (IFNâ) proteins bind to cells and activate an immune response.

Produced when viral and bacterial infections are detected, interferon proteins are vital to the body's defences. They activate immune cells, such as macrophages, can interfere with virus replication, and can boost cells' resilience to infection. They also enhance later immune responses to cancers and other stresses.

There are at least 20 subtypes of interferons that are produced at different stages of the immune response. They appear to have different functions, but these functions and their triggers are generally not well understood. The mapping of INFâ - cell interaction is a breakthrough in the field.

Professor Hertzog of MIMR's Centre for Innate Immunity and Infectious Diseases said interferon function was vital for developing and refining therapies for incurable diseases such as lupus and multiple sclerosis.

"Interferon therapy is useful in treating a number of diseases; however these treatments have dose-limiting side effects. Further, interferons appear to drive some autoimmune diseases, raising the prospect of interferon blockers as treatment," Professor Hertzog said.

"The more refined our understanding of interferon function, the more we can tailor treatments to optimise effectiveness - whether by boosting or blocking their actions."

Lead author on the paper, Dr Nicole de Weerd, also of the Centre for Innate Immunity and Infectious Diseases, said the research provided new pathways for rational drug design.

"We found that when IFNâ binds to a cell, it transmits an unusual signal that seems linked to some of the toxic side effects of interferon therapy, like sepsis. This provides a promising avenue to pursue more selective activation of interferon action," Dr de Weerd said.

Professor Rossjohn and Julian Vivian from the Department of Biochemistry and Molecular Biology collaborated closely on determining the IFNâ interactions at the molecular level.

"During this seven-year study, we have had great support from the Australian Synchrotron," Professor Rossjohn said.

The research was supported by the Australian Research Council and the National Health and Medical Research Council of Australia.

Emily Walker | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>