Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Fragrance That Breaks the Rules

07.12.2012
Synthesis of a Spirocyclic Seco Structure of the Principal Vetiver Odorant Khusimone

Approximately one third of all fragrances on the market contain vetiver oil as a key ingredient, for which no synthetic odorant is commercially available. Instead it has to be distilled from the dried roots of vetiver grass.

To find out about the structural requirements of vetiver odorants, researchers in Switzerland devised a synthesis to a 7,8-seco-khusimone, which still contained all the structural features held responsible for the vetiver odour. As they report in the European Journal of Organic Chemistry, however, the final product displayed none of the expected olfactory characteristics, thus proving the vetiver rule wrong.

Vetiver oil has a distinct and characteristic suave and sweet woody-earthy odour with additional green grapefruit and rhubarb-type facets. In perfumery it is often used to provide the woody base note in combination with rather inexpensive bergamot oil, or its synthetic counterparts, which provides a fresh citrus component.

Currently, there is no synthetic vetiver perfumery material available commercially. This lack of availability is partially due to the complex sesquiterpene nature of its constituents, and partially due to the lack of consensus as to which constituents contribute to its characteristic odour. One component for which there is consensus is (¨C)-khusimone, which forms only up to 2% of the essential oil, but does present a typical vetiver odour and is, so far, the only genuine natural lead structure.

Syntheses of related structures led to the development of a vetiver rule, which postulates that the woody odour of vetiver is a result of the presence of an ¦Á-branched carbonyl osmophore at a specific distance from a bulky group, with an overall dimension of 13¨C15 carbon atoms. Philip Kraft and Natacha Denizot (Givaudan, Switzerland) thus decided to apply this vetiver rule to the genuine lead structure khusimone itself in order to design a new vetiver odorant with even improved olfactory properties, and in addition an easier synthetic access.

The target structure, 7,8-seco-khusimone, was obtained as a mixture of diastereomers in a 10-step sequence starting from commercially available allyl alcohol and isovaleric acid. A key advantage of the sequence is that it fairly easily allows further modifications of the target structure. Although the desired compound was synthesised successfully it was 10 times less intense than (¨C)-khusimone and displayed a floral, rosy, green, germanium-like odour with no woody or vetiver character. Kraft and Denizot, therefore, conclude that the vetiver rule has been proved wrong, or at least that the structural requirements are more complex than first suggested.
Author: Philip Kraft, Givaudan Schweiz AG, D¨¹bendorf (Switzerland), mailto:philip.kraft@givaudan.com
Title: Synthesis of a Spirocyclic Seco Structure of the Principal Vetiver Odorant Khusimone

European Journal of Organic Chemistry , 2013, No. 1, Permalink to the article: http://dx.doi.org/10.1002/ejoc.201201318

Philip Kraft | Wiley-VCH
Further information:
http://www.wiley-vch.de

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>