Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Fly Mutation Suggests a New Route for Tackling ALS

09.04.2013
A team of researchers, led by Marc Freeman, PhD, an early career scientist with the Howard Hughes Medical Institute and associate professor of neurobiology at the University of Massachusetts Medical School have discovered a gene in the fruit fly Drosophila melanogaster that, when mutant, blocks the self-destruction of damaged axons, which could hold clues to treating motor neuron diseases, such as amyotrophic lateral sclerosis (ALS).

A neuron has a very distinctive form – a bush of dendrites that receive signals, an incredibly long axon, which is like a long tail, and “a little dot” between them that is the cell body, housing the genetic headquarters. Every part of the neuron is required for it to transmit messages.

“If anything breaks along any part of the neuron, the cell unplugs from the circuit and no longer functions,” explained Dr. Freeman, who presented this research at the Genetics Society of America’s 54th Annual Drosophila Research Conference in Washington, D.C.

Once the long tail-like axon is damaged, it shrivels away, basically self-destructing, and resulting in neurons that no longer operate. This catastrophic damage can happen in several ways: from inflammation, a neurodegenerative disease, a metabolic disorder such as diabetes, toxin exposure, or tumor growth. Such axon loss is thought to be a primary factor that leads to functional loss in patients with neurological disorders – it is equivalent to going into an electrical circuit and randomly cutting wires.

The study of axon destruction in response to damage goes back to British neurophysiologist Augustus Waller, who in 1850 described how an axon separated from the cell body and cut off from its nutrient supply breaks apart and is dismantled by scavenger cells. “The idea that this process, called Wallerian degeneration, was a passive wasting away of the axon held for 150 years,” Dr. Freeman said.

Then in the late 1980s, researchers discovered a mutation in the mouse, called Wlds, which enables a damaged axon to survive for weeks after injury. “That fundamentally changed how we think about an axon. Under certain circumstances, axons can survive for a much longer time than we have given them credit for,” Dr. Freeman explained.

Freeman’s laboratory speculated that if axon self-destruction is an active process, then there should be genes in the fly genome whose normal function is to destroy cut axons. They decided if they could break those genes responsible for axon destruction, then the axons shouldn’t fall apart. To identify those genes, they performed a labor-intensive screen, randomly breaking genes in the fly genome and looking for those that when broken blocked axon destruction after injury.

This approach led to the identification of one gene, called dSarm, whose normal function is to promote the destruction of the axon after injury. “We got beautiful protection of axons when we knocked out this molecule,” Dr. Freeman said. Mice and humans have forms of this gene too, and Freeman and colleagues have shown its functions in a similar way in mice. The preservation of these signaling mechanisms from flies to humans is a sign of evolutionary retention and argues for its importance.

To get closer to applying the axon death gene to the study of disease, the researchers crossed the mouse version of the Sarm mutation into a mouse model that has a type of familial ALS, which is also in humans. Although the mice still lost weight and had difficulty with a mobility test, they lived about 10 days longer than their brethren without the Sarm mutation, and at least half of their motor neurons remained intact. “Since not all the motor neurons are needed,” Dr. Freeman said, “even with a 50 percent reduction a patient could feel very close to normal. It would be life-changing for the patient, so it’s a step in the right direction.”

“We used Wallerian degeneration as a model for axon degeneration. We’ve identified a signal pathway whose normal function is to promote axon destruction after injury, and hope to build on this research to better understand the role of axon death in neurodegenerative diseases,” Dr. Freeman summed up.

ABOUT THE GSA DROSOPHILA RESEARCH CONFERENCE: Nearly 1,500 researchers attend the annual GSA Drosophila Research Conference to share the latest research using the fruit fly Drosophila melanogaster and other insect species. Many of findings from these model organisms have broad application for the study of human genetic traits and diseases. For more information about the conference, see http://www.dros-conf.org/2013/

ABOUT GSA: Founded in 1931, the Genetics Society of America (GSA) is the professional membership organization for scientific researchers, educators, bioengineers, bioinformaticians and others interested in the field of genetics. Its nearly 5,000 members work to advance knowledge in the basic mechanisms of inheritance, from the molecular to the population level. The GSA is dedicated to promoting research in genetics and to facilitating communication among geneticists worldwide through its conferences, including the biennial conference on Model Organisms to Human Biology, an interdisciplinary meeting on current and cutting edge topics in genetics research, as well as annual and biennial meetings that focus on the genetics of particular organisms, including C. elegans, Drosophila, fungi, mice, yeast, and zebrafish. GSA publishes GENETICS, a leading journal in the field and a new online, open-access publication, G3: Genes|Genomes|Genetics. For more information about GSA, please visit www.genetics-gsa.org. Also follow GSA on Facebook at facebook.com/GeneticsGSA and on Twitter @GeneticsGSA.

Phyllis Edelman | Newswise
Further information:
http://www.genetics-gsa.org

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>