Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A flip of the mitotic spindle has disastrous consequences for epithelial cells

22.07.2013
Stowers investigators use genetics and live cell imaging to illuminate molecular mechanisms that position the cell division machinery in growing tissues

Constructing a body is like building a house—if you compromise structural integrity, the edifice can collapse. Nowhere is that clearer on a cellular level than in the case of epithelial sheets, single layers of cells that line every body cavity from the gut to mammary glands. As long as epithelial cells pack tightly and adhere to their neighbors, the cellular business of building tissue barriers and constructing ducts goes smoothly. But if epithelial cells fail to hold together, they die, or worse, produce jumbled masses resembling tumors known collectively as carcinomas.

Stowers Institute for Medical Research Associate Investigator Matt Gibson, Ph.D., and his team use simple animal systems like fruit flies and sea anemones to investigate how epithelial cells maintain order while getting jostled by cell division.

New findings from his lab published in the July 21 advance online issue of Nature demonstrate that the way the mitotic spindle—the machinery that separates chromosomes into daughter cells during cell division—aligns relative to the surface of the cell layer is essential for the maintenance of epithelial integrity. It also hints at a surprising way that cells initiate a gene expression program seen in invasive cancers when that process goes awry.

The study employs live imaging of fruit fly imaginal discs, simple larval tissues that ultimately give rise to the adult wing. "In a culture dish, cells can divide willy nilly," says Gibson. "But in an organism cell division must be reconciled with the broader structural context. Our work is addressing how epithelial tissues maintain structural integrity, even during the extreme events of cell division."

The starting point for this work was the lab's 2011 Current Biology paper showing that when columnar cells packed in an epithelium divided, their upper (apical) end briefly ballooned out to allow the cell's nucleus to move into that region. As division began, the mitotic spindle (which faithfully distributes chromosomes into each daughter cell) invariably oriented itself parallel to the apical surface of the epithelium.

In other words, if you pointed a tiny camera in your gut toward dividing epithelial cells of its lining, you would "see" the mitotic spindle looking like a symmetrical web, exactly like it did in your high school biology textbook.

To determine why its orientation was non-random, the group did an equivalent experiment. Using high resolution fluorescence imaging to look inside dividing cells in developing wing discs, they observed that the two poles of the spindle were always near the septate junctions, specific regions of close molecular contact between neighboring cells. Two junction components, proteins called Discs Large and Scribble, were juxtaposed to the spindle, suggesting they might act as cues to orient it.

The seemingly odd names given to these factors decades ago reflect what biologists saw in fly mutants lacking each protein. In flies without Discs Large, the imaginal discs are massively overgrown, while fly embryos lacking Scribble resemble a chaotic scribble reminiscent of a tumor. Gibson reasoned that the reported tumor-suppressive activity of these proteins might be linked to a role in keeping the mitotic spindle in line.

So his group genetically deleted Scribble, Discs Large and a host of other factors in wing disc cells and watched what happened when cells divided, an effort aided by a customized microscope built by the Stowers Microscopy Center. What they saw was dramatic: Scribble deletion caused the mitotic spindle to flip over at a random angle, as did deletion of Discs Large. Next, by directly perturbing the spindle, the researchers video-captured the process by which cells with misoriented spindles began to peel away, or delaminate, from the epithelium.

"I did not expect that spindle orientation defects could be sufficient to cause loss of epithelial identity," explains Yu-ichiro Nakajima, Ph.D., a postdoctoral fellow in the Gibson lab and the study's first author. "But people in the field have hypothesized that spindle misorientation might cause tumorigenesis or even contribute to cancer development."

Initially, the group did not observe such dire consequences: Gibson says that delaminating cells generally "fall out of the epithelium" and are killed off by apoptosis, a mechanism healthy tissues use to eradicate damaged cells. But when the team experimentally inhibited apoptosis, tumor-like growths emerged at the base of the cell layer. Cells in those growths expressed genes switched on in invasive human tumors, among them the fruit fly version of human Matrix metalloproteinase-1, an epithelial cancer biomarker.

"The findings derived from epithelial biology often lead to a better understanding of cancer development," says Nakajima. "We have found that spindle orientation has a tumor-suppressive role in proliferating epithelia. So we are looking for other spindle regulators that may represent novel tumor suppressors."

Human epithelial cells do express mammalian Scribble and Discs Large proteins, and both play key roles in maintaining epithelial cell polarity, or shap—a property lost in metastatic cancer cells. Whether Scribble or Discs Large act as tumor suppressors in human cancers is under investigation.

Gibson urges caution in comparing regulation of Drosophila and human epithelia. Nonetheless he notes that normal tissues in both flies and humans protect themselves by killing off misbehaving cells via apoptosis. If that mechanism failed, as is frequently observed in human cancers, disordered cells within an epithelium could escape.

"When cells are basically imprisoned in an epithelial layer, things stay nicely organized," says Gibson. "But in this study we found that simply forcing a cell to delaminate from an epithelium is enough to initiate an abnormal gene expression program. That means that maintaining an ordered structure is not just a physical requirement but could also protects cells from switching on potentially aberrant genes."

Other contributors were Emily Meyer from the Gibson lab, and Amanda Kroesen and Sean McKinney, Ph.D., from the Stowers Microscopy Center.

The study was funded by the Stowers Institute for Medical Research and the Burroughs Wellcome Fund.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife, Virginia, opened the Institute in 2000. Since then, the Institute has spent over 900 million dollars in pursuit of its mission.

Currently, the Institute is home to nearly 550 researchers and support personnel; over 20 independent research programs; and more than a dozen technology-development and core facilities.

Gina Kirchweger | EurekAlert!
Further information:
http://www.stowers.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>