Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A more flexible window into the brain

14.11.2011
Penn-led team develops microelectronic device to map brain activity

A team of researchers co-led by the University of Pennsylvania has developed and tested a new high-resolution, ultra-thin device capable of recording brain activity from the cortical surface without having to use penetrating electrodes. The device could make possible a whole new generation of brain-computer interfaces for treating neurological and psychiatric illness and research. The work was published in Nature Neuroscience.

"The new technology we have created can conform to the brain's unique geometry, and records and maps activity at resolutions that have not been possible before," says Brian Litt, MD, the study's senior author and Associate Professor of Neurology at the Perelman School of Medicine and Bioengineering at the University of Pennsylvania. "Using this device, we can explore the brain networks underlying normal function and disease with much more precision, and its likely to change our understanding of memory, vision, hearing and many other normal functions and diseases." For our patients, implantable brain devices could be inserted in less invasive operations and, by mapping circuits involved in epilepsy, paralysis, depression and other 'network brain disorders' in sufficient detail, this could allow us to intervene to make patients better, Litt said.

Composed of 720 silicon nanomembrane transistors in a multiplexed 360-channel array, the newly designed ultrathin, flexible, foldable device can be positioned not only on the brain surface but also inside sulci and fissures or even between the cortical hemispheres, areas that are physically inaccessible to conventional rigid electrode arrays. Current arrays also require separate wires for each individual sensor, meaning that they can sample broad regions of the brain with low resolution or small regions with high resolution, but not both. The multiplexed nanosensors of the new device can cover a much large brain area with high resolution, while using almost ten times fewer wires.

Monitoring and studying the brain's constant electrical activity, or to alter it when it goes awry, often requires the placement of electrodes deep within specific regions of the brain. These currently used devices can be clumsy and of low resolution, and those used for neuromotor prostheses can cause tissue inflammation and hemorrhages.

Study collaborators including lead author Jonathan Viventi, PhD, an assistant professor at the Polytechnic Institute of New York University who worked with Litt on the project as a postdoctoral fellow at Penn, and colleagues John Rogers from the University of Illinois Urbana-Champaign, and Dae-Hyeong Kim from Seoul National University, worked together to conceive and build the array, believed to be the first device of its kind to be used as a brain interface.

In animal models, researchers observed responses to visual stimuli and recorded previously unknown details of sleep patterns and brain activity during epileptic seizures. The array recorded spiral waves during seizure activity that have not been previously recorded in whole brain. These patterns are similar to those seen in the heart during ventricular fibrillation, raising the possibility of fighting epilepsy with some of the same methods used to treat cardiac arrhythmias, like focal destruction or ablation of abnormal circuits.

The observation of spiral wave activity also served to highlight the extreme sensitivity and resolving capacity of this new active array, which was able to easily distinguish normal signal patterns from abnormal waves even in the same frequency ranges. The activity recorded by Litt's research team has enormous implications not only for controlling seizures but for understanding and treating disorders of other brain processes affecting sleep, memory, and learning, and for the characterizing and treating chronic pain, depression, and other neuropsychological disorders.

Ultimately, the researchers expect that flexible electrode arrays can be perfected for use for various therapeutic and research purposes throughout the body. They could serve as neuroprostheses, pacemakers, ablative devices, or neuromuscular stimulators. Their versatility, sensitivity, and reduced effect on surrounding tissues puts them in the forefront of the next generation of brain-computer interfaces.

In addition to the National Institutes of Health's National Institute of Neurological Disorders and Stroke (NINDS), the research was supported by the National Science Foundation, the Division of Materials Sciences at the U.S. Department of Energy, Citizens United for Research in Epilepsy, the Dr. Michel and Mrs. Anna Mirowski Discovery Fund for Epilepsy Research, and NIH's National Heart, Lung, and Blood Institute.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Kim Menard | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>