Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A more flexible window into the brain

14.11.2011
Penn-led team develops microelectronic device to map brain activity

A team of researchers co-led by the University of Pennsylvania has developed and tested a new high-resolution, ultra-thin device capable of recording brain activity from the cortical surface without having to use penetrating electrodes. The device could make possible a whole new generation of brain-computer interfaces for treating neurological and psychiatric illness and research. The work was published in Nature Neuroscience.

"The new technology we have created can conform to the brain's unique geometry, and records and maps activity at resolutions that have not been possible before," says Brian Litt, MD, the study's senior author and Associate Professor of Neurology at the Perelman School of Medicine and Bioengineering at the University of Pennsylvania. "Using this device, we can explore the brain networks underlying normal function and disease with much more precision, and its likely to change our understanding of memory, vision, hearing and many other normal functions and diseases." For our patients, implantable brain devices could be inserted in less invasive operations and, by mapping circuits involved in epilepsy, paralysis, depression and other 'network brain disorders' in sufficient detail, this could allow us to intervene to make patients better, Litt said.

Composed of 720 silicon nanomembrane transistors in a multiplexed 360-channel array, the newly designed ultrathin, flexible, foldable device can be positioned not only on the brain surface but also inside sulci and fissures or even between the cortical hemispheres, areas that are physically inaccessible to conventional rigid electrode arrays. Current arrays also require separate wires for each individual sensor, meaning that they can sample broad regions of the brain with low resolution or small regions with high resolution, but not both. The multiplexed nanosensors of the new device can cover a much large brain area with high resolution, while using almost ten times fewer wires.

Monitoring and studying the brain's constant electrical activity, or to alter it when it goes awry, often requires the placement of electrodes deep within specific regions of the brain. These currently used devices can be clumsy and of low resolution, and those used for neuromotor prostheses can cause tissue inflammation and hemorrhages.

Study collaborators including lead author Jonathan Viventi, PhD, an assistant professor at the Polytechnic Institute of New York University who worked with Litt on the project as a postdoctoral fellow at Penn, and colleagues John Rogers from the University of Illinois Urbana-Champaign, and Dae-Hyeong Kim from Seoul National University, worked together to conceive and build the array, believed to be the first device of its kind to be used as a brain interface.

In animal models, researchers observed responses to visual stimuli and recorded previously unknown details of sleep patterns and brain activity during epileptic seizures. The array recorded spiral waves during seizure activity that have not been previously recorded in whole brain. These patterns are similar to those seen in the heart during ventricular fibrillation, raising the possibility of fighting epilepsy with some of the same methods used to treat cardiac arrhythmias, like focal destruction or ablation of abnormal circuits.

The observation of spiral wave activity also served to highlight the extreme sensitivity and resolving capacity of this new active array, which was able to easily distinguish normal signal patterns from abnormal waves even in the same frequency ranges. The activity recorded by Litt's research team has enormous implications not only for controlling seizures but for understanding and treating disorders of other brain processes affecting sleep, memory, and learning, and for the characterizing and treating chronic pain, depression, and other neuropsychological disorders.

Ultimately, the researchers expect that flexible electrode arrays can be perfected for use for various therapeutic and research purposes throughout the body. They could serve as neuroprostheses, pacemakers, ablative devices, or neuromuscular stimulators. Their versatility, sensitivity, and reduced effect on surrounding tissues puts them in the forefront of the next generation of brain-computer interfaces.

In addition to the National Institutes of Health's National Institute of Neurological Disorders and Stroke (NINDS), the research was supported by the National Science Foundation, the Division of Materials Sciences at the U.S. Department of Energy, Citizens United for Research in Epilepsy, the Dr. Michel and Mrs. Anna Mirowski Discovery Fund for Epilepsy Research, and NIH's National Heart, Lung, and Blood Institute.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4 billion enterprise.

Penn's Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools and among the top 10 schools for primary care. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $507.6 million awarded in the 2010 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top 10 hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital – the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2010, Penn Medicine provided $788 million to benefit our community.

Kim Menard | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>