Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A flash of light as a learning aid

12.09.2014

Special ion channels make it possible: Neurons can be activated and deactivated purposefully using light. Scientists from the University of Würzburg have now significantly improved these channels, making it easier than ever before to examine complex patterns of behavior.

They are more than 10,000 times more effective than their naturally occurring variant: Light-sensitive ion channels developed and tested by Würzburg plant physiologist Professor Georg Nagel and physiologist Dr. Robert Kittel. They make it much easier than before to stimulate neurons, thereby reducing the effort required in a whole range of experiments. As a result, the scientists are opening up new paths in the study of complex brain functions; they present their work in Proceedings of the National Academy of Science (PNAS).

Light switch for neurons

“With the help of ion channels, cells conduct electrically charged particles through their cell membrane into the cell interior or out into the extracellular space. Neurons use this mechanism, for example, to transmit signals from sensations to the brain and to control muscles,” says Georg Nagel to explain how these cellular constituents work. The research conducted by the two scientists is focused on very specific ion channels, known as channelrhodopsins. These react to light and can therefore be activated and deactivated again in a comparatively simple manner. Nagel is one of the pioneers in this field, which has become known as “optogenetics”.

For a better understanding of the brain

One research area in particular has benefited enormously from the development of channelrhodopsins: neuroscience. The targeted control of individual neurons and groups of neurons allows deep insights into complex brain functions; the technology provides researchers with a tool that they can use to examine the causal relationship between neuronal activity and behavior.

“The development of light-sensitive ion channels, which are integrated purposefully into specific cells with the help of genetic engineering, has proven to be a unique solution for this challenge,” says Robert Kittel. Kittel, who is in charge of an Emmy Noether research group at the University of Würzburg’s Institute of Physiology, knows what he is talking about. Together with his team, he is studying the fruit fly Drosophila melanogaster to learn about the molecular mechanisms in neurons and their relationship with certain behaviors. Kittel also relies here on light-sensitive ion channels.

Dark epithelium complicates research

Until now, however, scientists had a serious problem when conducting their experiments: “In order to be able to study the behavior of fruit flies, the insects have to be able to move around as undisturbed and as freely as possible,” says Kittel. But, at the same time, the researchers have to be in a position to activate the channelrhodopsins in the neurons with light pulses. With fly larvae this is still comparatively easy since their bodies are virtually transparent. It is more difficult with mature insects; in adults the pigmented integument significantly reduces the incidence of light. It used to take considerable effort on the part of the scientists to offset this disadvantage in their experiments, and still they would not be able to overcome every single problem. “In order to activate the channelrhodopsins in these cases, we have to use high-energy light,” says Kittel. If this is done over a relatively long period of time, the heat generated can harm the flies.

Light triggers courtship behavior

The performance of the new ion channels developed by Nagel have been put to the test by Kittel and his colleagues in a series of experiments on fruit flies – including an examination of a complex behavior, the courtship ritual. “In the wild, male fruit flies demonstrate a characteristic pattern of behavior during courtship that is made up of a fixed sequence of different activities,” explains Robert Kittel. As part of this, the males first “tap” the female on the abdomen and then encircle or follow her. Meanwhile, they extend a wing and start to vibrate it, producing a very special “love song”. This behavior is stimulated by a network of around 2,000 neurons.

Do male flies exhibit this behavior even when the neuronal network, loaded with the newly developed ion channels, is activated by comparatively weak light pulses? Yes, proves the Würzburg study – though with changes in the sequence. “Our tests suggest that the biophysical properties of these ion channels reverse the temporal sequence of the individual elements of the courtship ritual,” say the researchers. Nagel and Kittel presume that responsibility for this lies with the fact that the corresponding neurons are activated very quickly by the light pulse, and this takes a while to end.

Learning at the touch of a switch

Whether higher neuronal functions can also be researched in experiments with the help of the new ion channels has been examined by the scientists in a classical learning situation in collaboration with Professor André Fiala from the University of Göttingen. Fruit flies, for example, can be trained to recognize and distinguish between different smells. The traditional method for doing this is to present the insects with one scent together with a reward and another scent in combination with a punishment. After a series of repetitions, the insects have learned to avoid one of the scents and to seek out the other.

Fiala achieved the same result in his experiments. However, he did not use an actual reward or punishment. Instead, when presenting one scent he used short flashes of light to activate specific cells in the nervous system of the fruit flies, known as dopaminergic neurons. “These modulating neurons activate the ‘punishment information’ in the process of associative learning,” explains Fiala. In so doing, they ensure that the flies learn to keep away from this smell. The success rate in this learning process was just as high as in comparable experiments in which the flies experienced a real punishment.

Numerous benefits for behavioral researchers

All in all, the scientists agree that the new channelrhodopsin is particularly suited to experiments desiring maximum light sensitivity – such as when cells are difficult to trigger by optical means or there is a risk of harm from heat. Therefore, the ion channel is especially suitable for experiments in which the quantity of light is the limiting factor, such as tests on animals that move around freely in the space. Kittel and Nagel are convinced that the properties of this “powerful optogenetic tool” are of interest not only to the entire Drosophila community, but also to all biologists who want to research the behavior of freely moving animals.

Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications. Alexej Dawydow, Ronnie Gueta, Dmitrij Ljaschenko, Sybille Ullrich, Moritz Hermann, Nadine Ehmann, Shiqiang Gao, André Fiala, Tobias Langenhan, Georg Nagel, and Robert J. Kittel.

Contact

Dr. Robert Kittel, T: +49 (0)931 31-86046, robert.kittel@uni-wuerzburg.de
Prof. Dr. Georg Nagel, T: +49 (0)931 31-86143, nagel@uni-wuerzburg.de

Weitere Informationen:

http://www.pnas.org/cgi/doi/10.1073/pnas.1408269111

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

Further reports about: activate animals experiments explains flies individual insects neurons punishment sequence series

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>