Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A flash of light as a learning aid

12.09.2014

Special ion channels make it possible: Neurons can be activated and deactivated purposefully using light. Scientists from the University of Würzburg have now significantly improved these channels, making it easier than ever before to examine complex patterns of behavior.

They are more than 10,000 times more effective than their naturally occurring variant: Light-sensitive ion channels developed and tested by Würzburg plant physiologist Professor Georg Nagel and physiologist Dr. Robert Kittel. They make it much easier than before to stimulate neurons, thereby reducing the effort required in a whole range of experiments. As a result, the scientists are opening up new paths in the study of complex brain functions; they present their work in Proceedings of the National Academy of Science (PNAS).

Light switch for neurons

“With the help of ion channels, cells conduct electrically charged particles through their cell membrane into the cell interior or out into the extracellular space. Neurons use this mechanism, for example, to transmit signals from sensations to the brain and to control muscles,” says Georg Nagel to explain how these cellular constituents work. The research conducted by the two scientists is focused on very specific ion channels, known as channelrhodopsins. These react to light and can therefore be activated and deactivated again in a comparatively simple manner. Nagel is one of the pioneers in this field, which has become known as “optogenetics”.

For a better understanding of the brain

One research area in particular has benefited enormously from the development of channelrhodopsins: neuroscience. The targeted control of individual neurons and groups of neurons allows deep insights into complex brain functions; the technology provides researchers with a tool that they can use to examine the causal relationship between neuronal activity and behavior.

“The development of light-sensitive ion channels, which are integrated purposefully into specific cells with the help of genetic engineering, has proven to be a unique solution for this challenge,” says Robert Kittel. Kittel, who is in charge of an Emmy Noether research group at the University of Würzburg’s Institute of Physiology, knows what he is talking about. Together with his team, he is studying the fruit fly Drosophila melanogaster to learn about the molecular mechanisms in neurons and their relationship with certain behaviors. Kittel also relies here on light-sensitive ion channels.

Dark epithelium complicates research

Until now, however, scientists had a serious problem when conducting their experiments: “In order to be able to study the behavior of fruit flies, the insects have to be able to move around as undisturbed and as freely as possible,” says Kittel. But, at the same time, the researchers have to be in a position to activate the channelrhodopsins in the neurons with light pulses. With fly larvae this is still comparatively easy since their bodies are virtually transparent. It is more difficult with mature insects; in adults the pigmented integument significantly reduces the incidence of light. It used to take considerable effort on the part of the scientists to offset this disadvantage in their experiments, and still they would not be able to overcome every single problem. “In order to activate the channelrhodopsins in these cases, we have to use high-energy light,” says Kittel. If this is done over a relatively long period of time, the heat generated can harm the flies.

Light triggers courtship behavior

The performance of the new ion channels developed by Nagel have been put to the test by Kittel and his colleagues in a series of experiments on fruit flies – including an examination of a complex behavior, the courtship ritual. “In the wild, male fruit flies demonstrate a characteristic pattern of behavior during courtship that is made up of a fixed sequence of different activities,” explains Robert Kittel. As part of this, the males first “tap” the female on the abdomen and then encircle or follow her. Meanwhile, they extend a wing and start to vibrate it, producing a very special “love song”. This behavior is stimulated by a network of around 2,000 neurons.

Do male flies exhibit this behavior even when the neuronal network, loaded with the newly developed ion channels, is activated by comparatively weak light pulses? Yes, proves the Würzburg study – though with changes in the sequence. “Our tests suggest that the biophysical properties of these ion channels reverse the temporal sequence of the individual elements of the courtship ritual,” say the researchers. Nagel and Kittel presume that responsibility for this lies with the fact that the corresponding neurons are activated very quickly by the light pulse, and this takes a while to end.

Learning at the touch of a switch

Whether higher neuronal functions can also be researched in experiments with the help of the new ion channels has been examined by the scientists in a classical learning situation in collaboration with Professor André Fiala from the University of Göttingen. Fruit flies, for example, can be trained to recognize and distinguish between different smells. The traditional method for doing this is to present the insects with one scent together with a reward and another scent in combination with a punishment. After a series of repetitions, the insects have learned to avoid one of the scents and to seek out the other.

Fiala achieved the same result in his experiments. However, he did not use an actual reward or punishment. Instead, when presenting one scent he used short flashes of light to activate specific cells in the nervous system of the fruit flies, known as dopaminergic neurons. “These modulating neurons activate the ‘punishment information’ in the process of associative learning,” explains Fiala. In so doing, they ensure that the flies learn to keep away from this smell. The success rate in this learning process was just as high as in comparable experiments in which the flies experienced a real punishment.

Numerous benefits for behavioral researchers

All in all, the scientists agree that the new channelrhodopsin is particularly suited to experiments desiring maximum light sensitivity – such as when cells are difficult to trigger by optical means or there is a risk of harm from heat. Therefore, the ion channel is especially suitable for experiments in which the quantity of light is the limiting factor, such as tests on animals that move around freely in the space. Kittel and Nagel are convinced that the properties of this “powerful optogenetic tool” are of interest not only to the entire Drosophila community, but also to all biologists who want to research the behavior of freely moving animals.

Channelrhodopsin-2-XXL, a powerful optogenetic tool for low-light applications. Alexej Dawydow, Ronnie Gueta, Dmitrij Ljaschenko, Sybille Ullrich, Moritz Hermann, Nadine Ehmann, Shiqiang Gao, André Fiala, Tobias Langenhan, Georg Nagel, and Robert J. Kittel.

Contact

Dr. Robert Kittel, T: +49 (0)931 31-86046, robert.kittel@uni-wuerzburg.de
Prof. Dr. Georg Nagel, T: +49 (0)931 31-86143, nagel@uni-wuerzburg.de

Weitere Informationen:

http://www.pnas.org/cgi/doi/10.1073/pnas.1408269111

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

Further reports about: activate animals experiments explains flies individual insects neurons punishment sequence series

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>