Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Flash of Insight: Chemist Uses Lasers to See Proteins at Work

Binghamton University researcher Christof Grewer thinks he has an important brain transport protein – glutamate transporter – figured out. And he’s using a novel approach to spy on them by taking aim with lasers.

Grewer, a biophysical chemist, studies glutamate transport proteins, miniscule components of our brains that move glutamate among cells. Glutamate, an important molecule in cellular metabolism, is also a neurotransmitter. He explains his research on these tiny proteins in the brain using an analogy: imagine never having seen a car before and trying to determine what makes the vehicle run.

“We would be interested in seeing what happens when the car is moving, and we’d take pictures of that,” he says. “We’d see the pistons moving, and that would be the beginning of understanding.”

Scientists know the transport proteins are important, and they know they move glutamate in and out of cells through a sort of door in the cell wall, known as a glutamate transporter. But exactly how the proteins trigger those doors in the cell wall, and what makes them move glutamate to the inside or outside of a cell, is unknown.

Learning how those triggers function could have major implications for human health. For example, during a stroke, when blood and oxygen to the brain are restricted, brain cells release glutamate into the space surrounding them. That starts a toxic chain that can kill brain cells and harm certain brain functions. Knowing how the glutamate molecules are transported through cell walls could one day lead to drugs that help or halt the transport.

Grewer — one of perhaps two dozen researchers in the world who work on this problem — switches analogies as he continues describing the way these proteins move.

“Think about people being transported in an elevator in a tall building,” he says. “So in order for that to work, the door of the elevator has to open, and then the person has to step into the elevator. And then the elevator brings you to a higher floor, and then the door has to open, and the person has to walk out.”

In this case, glutamate molecules are the people. The elevator cars are the glutamate transporters. And the electricity and wires that move elevator doors are — well, that’s what he’s trying to figure out. Grewer’s brainstorm was to create a method that uses lasers to trigger the transports’ action. By controlling when the movement happens, he can document it. It all goes back to his analogy of photographing a car’s pistons. Taking snapshots may illuminate how the transporters and glutamate molecules work together.

Grewer stumbled onto the glutamate transporters. When he was a graduate student in physical chemistry at Johann Wolfgang Goethe-University in Frankfurt, Germany, his research focused on chemistry and light. His introduction to biochemistry — and to glutamate receptors — came during a post-doctoral fellowship at

Cornell University.

“We were trying to activate these receptors on a very fast time scale,” he says. “It’s not that easy to do.”

His background in chemistry and physics brought fresh insight to the lab. What if, he thought, a flash of light could help trigger the transport process? By timing the reactions, the researchers could better capture what happens during the glutamate transfer.

“They were so interesting to me that I just had to stay with them,” Grewer says of glutamate transporters. “I thought, that is just the most amazing thing to study.”

Most biochemical research on the brain focuses on possible cures and many researchers are experimenting with known drugs to judge their effect on brain function.

In most proteins, and in biology, researchers know what the genetic code and the DNA look like. The number of proteins in the body is also a known factor. But what’s not unclear is how these proteins function. And that’s where Grewer’s work comes in. He has become a pioneer in the usage of lasers, which although used on other types of proteins, has not been used before in this area of study.

For more Binghamton University research news, visit

Ryan Yarosh | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>