Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A fateful pause

09.07.2010
Genetic mechanism once thought rare may allow rapid cell production

We take our blood for granted, but its creation requires a complicated series of steps, starting with the formation of blood stem cells during early embryonic development, followed by progressive differentiation into the progenitors of red cells, white cells and platelets, and ultimately the full set of blood cells. Now, in the July 9 issue of Cell, researchers at Children's Hospital Boston report a surprising twist in how mature red blood cells form – which may explain the body's ability to rapidly replenish them in response to injury.

Previously, working with zebrafish – whose transparent bodies make it easy to watch blood formation -- the laboratory of Leonard Zon, MD, director of the Stem Cell Program at Children's, found a gene which, when mutated, left the embryonic fish bereft of red blood cells (this profoundly anemic strain was dubbed moonshine). Though the fish did form progenitors for red blood cells (called erythroid progenitors), these cells failed to become mature red blood cells, and instead died.

But why? The new research, led by Xiaoying Bai, PhD, in Zon's lab, showed that when the gene, TIF1 gamma, is mutated, the machinery that allows red blood cells to form from their progenitors is left in suspended animation.

In order for an erythroid progenitor to make a red blood cell, certain genes must be activated, or transcribed, to create templates for building the necessary proteins. Transcription involves an orchestrated series of events: tightly coiled DNA is unwrapped, unwound and its strands separated, then a portion of one strand is "read" down its length and used to make the template, cued by signals from the cell. But this reading process has been recently discovered to have built-in pauses, requiring another signal to tell transcription to resume.

TIF1 gamma, Bai and colleagues show, regulates this process of resuming transcription, known as transcriptional elongation. When TIF1 gamma is mutated in zebrafish, Bai and colleagues found, transcriptional elongation never happens. As a result, the erythroid progenitors get stuck in "pause" and never make mature red blood cells.

Further tests showed the same to be true in human cells – when erythroid progenitors were taken from patient blood samples and TIF1 gamma was blocked, red cells did not develop from them.

The pausing/stalling of transcription was once thought rare. But Bai, Zon and colleagues think it may provide a way for the body to quickly switch on production of red cells, and perhaps – since TIF1 gamma is found all over the body -- other kinds of cells the body needs to make quickly. Rather than have to laboriously set up all transcription each time red cells are needed, the machinery can simply be left on pause.

"We think this is the fastest way to respond to stimulation," says Bai. "The transcription machinery is already in place, but it's arrested until the right signal tells it to go. When you need massive production that needs to be synchronized to respond to the environment, this is the best way to regulate it."

Several recent genome-wide studies found a similar pausing/stalling to be common in the genome, suggesting it's a critical step in regulating gene activity. But this is one of the first studies to demonstrate a real-life application of stalling, in a live animal. "We think this is the first time anyone has shown genetically, and in vivo, that transcriptional elongation is involved in cell fate," says Bai.

The findings may have implications for treating severe anemia, as well as leukemia. In a form of leukemia known as MLL, there is evidence that transcription elongation factors are involved in oncogene formation, presumably overriding the "pause" mechanism and causing transcription to be stuck on – so white blood cells (leukocytes) are made over and over.

The study was supported by the National Institutes of Health and the Howard Hughes Medical Institute.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including nine members of the National Academy of Sciences, 12 members of the Institute of Medicine and 13 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 396-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital and its research visit: childrenshospital.org/newsroom.

Erin McColgan | EurekAlert!
Further information:
http://www.childrens.harvard.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>