Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A fateful pause

09.07.2010
Genetic mechanism once thought rare may allow rapid cell production

We take our blood for granted, but its creation requires a complicated series of steps, starting with the formation of blood stem cells during early embryonic development, followed by progressive differentiation into the progenitors of red cells, white cells and platelets, and ultimately the full set of blood cells. Now, in the July 9 issue of Cell, researchers at Children's Hospital Boston report a surprising twist in how mature red blood cells form – which may explain the body's ability to rapidly replenish them in response to injury.

Previously, working with zebrafish – whose transparent bodies make it easy to watch blood formation -- the laboratory of Leonard Zon, MD, director of the Stem Cell Program at Children's, found a gene which, when mutated, left the embryonic fish bereft of red blood cells (this profoundly anemic strain was dubbed moonshine). Though the fish did form progenitors for red blood cells (called erythroid progenitors), these cells failed to become mature red blood cells, and instead died.

But why? The new research, led by Xiaoying Bai, PhD, in Zon's lab, showed that when the gene, TIF1 gamma, is mutated, the machinery that allows red blood cells to form from their progenitors is left in suspended animation.

In order for an erythroid progenitor to make a red blood cell, certain genes must be activated, or transcribed, to create templates for building the necessary proteins. Transcription involves an orchestrated series of events: tightly coiled DNA is unwrapped, unwound and its strands separated, then a portion of one strand is "read" down its length and used to make the template, cued by signals from the cell. But this reading process has been recently discovered to have built-in pauses, requiring another signal to tell transcription to resume.

TIF1 gamma, Bai and colleagues show, regulates this process of resuming transcription, known as transcriptional elongation. When TIF1 gamma is mutated in zebrafish, Bai and colleagues found, transcriptional elongation never happens. As a result, the erythroid progenitors get stuck in "pause" and never make mature red blood cells.

Further tests showed the same to be true in human cells – when erythroid progenitors were taken from patient blood samples and TIF1 gamma was blocked, red cells did not develop from them.

The pausing/stalling of transcription was once thought rare. But Bai, Zon and colleagues think it may provide a way for the body to quickly switch on production of red cells, and perhaps – since TIF1 gamma is found all over the body -- other kinds of cells the body needs to make quickly. Rather than have to laboriously set up all transcription each time red cells are needed, the machinery can simply be left on pause.

"We think this is the fastest way to respond to stimulation," says Bai. "The transcription machinery is already in place, but it's arrested until the right signal tells it to go. When you need massive production that needs to be synchronized to respond to the environment, this is the best way to regulate it."

Several recent genome-wide studies found a similar pausing/stalling to be common in the genome, suggesting it's a critical step in regulating gene activity. But this is one of the first studies to demonstrate a real-life application of stalling, in a live animal. "We think this is the first time anyone has shown genetically, and in vivo, that transcriptional elongation is involved in cell fate," says Bai.

The findings may have implications for treating severe anemia, as well as leukemia. In a form of leukemia known as MLL, there is evidence that transcription elongation factors are involved in oncogene formation, presumably overriding the "pause" mechanism and causing transcription to be stuck on – so white blood cells (leukocytes) are made over and over.

The study was supported by the National Institutes of Health and the Howard Hughes Medical Institute.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including nine members of the National Academy of Sciences, 12 members of the Institute of Medicine and 13 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 396-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about the hospital and its research visit: childrenshospital.org/newsroom.

Erin McColgan | EurekAlert!
Further information:
http://www.childrens.harvard.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>