Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Fat Cell Grows Up

18.05.2010
Stages from Early to Mature Cell Offer Clues for Anti-Obesity Drug Development, Penn Researchers Report

Getting from point A to B may sound simple, but not so in the formation of fat cells.

In a finding with potential drug-development implications, Mitchell A. Lazar, M.D., Ph.D., director of the Institute for Diabetes, Obesity, and Metabolism at the University of Pennsylvania School of Medicine, and colleagues report in the current issue of Genes & Development the discovery of an intermediate state between early-stage fat cells and fully mature ones that is only present transiently during the fat-cell formation process. This intermediate state is induced by hormones related to cortisol, which are known to contribute to obesity and metabolic disturbances in people.

New therapies for obesity or metabolic diseases such as diabetes could potentially target this transition state toward a maturing fat cell.

The transition state – present within 24 hours of the start of the fat-cell differentiation process – is defined by chemical changes to genetic material called chromatin, which package a cell’s DNA. These changes kick start the expression of regulatory proteins and provide a cellular memory that allows the cell to continue developing even after the signal to undergo this transition has waned.

Probing the Genome
Like all cells in the body, fat cells arise from stem cells. Embryonic stem cells give rise to another type of stem cell, which in turn gives rise to early-stage fat cells. Upon stimulation, those early cells complete their differentiation to become fully mature fat cells. Lazar and his team asked: What are the molecular players required to induce the final transformation?

Using a cell culture system, the team, led by postdoctoral researcher David Steger, PhD, probed genes involved in fat-cell development and function for chromatin changes that were associated with the start of mature fat-cell formation. They found chromatin changes near a gene encoding the master regulator of differentiation, PPAR-gamma, which is also a target of anti-diabetic drugs.

"That gave us confidence to interrogate the whole genome," Lazar says.

The team scanned the genome for regions that were modified within 24 hours of the onset of fat-cell differentiation and analyzed those regions for potential binding sites for proteins that induce the expression of other genes. These proteins activate the genes whose proteins cause changes in cellular behavior and function.

Complex Control System
The researchers found that many of the chromatin-modified regions contained binding sites for two proteins, CEBP-beta and the glucocorticoid receptor (GR). In turn, these proteins recruit additional proteins to their locations along chromosomes. The result is a protein complex that nudges the precursor fat cell to become a mature fat cell.

That the glucocorticoid receptor is part of this transition state is remarkable, Lazar says, in that the growth factor complex required to induce fat-cell formation includes dexamethasone, one type of gluococorticoid hormone. No one had ever considered why dexamethasone was required to make this transition happen, Lazar says. "The dexamethasone is stimulating the hormone receptor to bind transiently at this site and create the transition state.” This happens at dozens of sites in the cell genome, and the hormone is the coordinating signal.

On the basis of their findings, Lazar and his colleagues propose a model in which, upon stimulation of pre-fat cells, CEBP-beta, GR, and other proteins assemble near the PPAR-gamma gene and activate it. Once that happens, the circuit is on, even if the fat-cell-forming stimulus should disappear. In what the investigators call a “feedforward loop,” the PPAR-gamma protein induces its own expression, as well as that of another master regulatory gene, CEBP-alpha. CEBP-alpha, in turn, activates its expression as well as that of PPAR-gamma. More importantly, both proteins also induce the expression of fat-cell genes, thereby committing the cell to its ultimate fate.

“The idea that a transient hormone signal coordinates many locations throughout the genome in the process of making a fat cell is surprising and informative," Lazar says.

And that state – or rather, the molecular players that comprise it -- could provide a useful target for anti-obesity drug development, he adds.

The study was supported by the National Institutes for Diabetes, Digestive and Kidney Diseases, the George S. Cox Medical Research Institute, and by the Picower Foundation.

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $3.6 billion enterprise.

Penn’s School of Medicine is currently ranked #2 in U.S. News & World Report’s survey of research-oriented medical schools, and is consistently among the nation’s top recipients of funding from the National Institutes of Health, with $367.2 million awarded in the 2008 fiscal year.

Penn Medicine’s patient care facilities include:

The Hospital of the University of Pennsylvania – the nation’s first teaching hospital, recognized as one of the nation’s top 10 hospitals by U.S. News & World Report.
Penn Presbyterian Medical Center – named one of the top 100 hospitals for cardiovascular care by Thomson Reuters for six years.
Pennsylvania Hospital – the nation’s first hospital, founded in 1751, nationally recognized for excellence in orthopaedics, obstetrics & gynecology, and behavioral health.

Additional patient care facilities and services include Penn Medicine at Rittenhouse, a Philadelphia campus offering inpatient rehabilitation and outpatient care in many specialties; as well as a primary care provider network; a faculty practice plan; home care and hospice services; and several multispecialty outpatient facilities across the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2009, Penn Medicine provided $733.5 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>