Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Fat Cell Grows Up

18.05.2010
Stages from Early to Mature Cell Offer Clues for Anti-Obesity Drug Development, Penn Researchers Report

Getting from point A to B may sound simple, but not so in the formation of fat cells.

In a finding with potential drug-development implications, Mitchell A. Lazar, M.D., Ph.D., director of the Institute for Diabetes, Obesity, and Metabolism at the University of Pennsylvania School of Medicine, and colleagues report in the current issue of Genes & Development the discovery of an intermediate state between early-stage fat cells and fully mature ones that is only present transiently during the fat-cell formation process. This intermediate state is induced by hormones related to cortisol, which are known to contribute to obesity and metabolic disturbances in people.

New therapies for obesity or metabolic diseases such as diabetes could potentially target this transition state toward a maturing fat cell.

The transition state – present within 24 hours of the start of the fat-cell differentiation process – is defined by chemical changes to genetic material called chromatin, which package a cell’s DNA. These changes kick start the expression of regulatory proteins and provide a cellular memory that allows the cell to continue developing even after the signal to undergo this transition has waned.

Probing the Genome
Like all cells in the body, fat cells arise from stem cells. Embryonic stem cells give rise to another type of stem cell, which in turn gives rise to early-stage fat cells. Upon stimulation, those early cells complete their differentiation to become fully mature fat cells. Lazar and his team asked: What are the molecular players required to induce the final transformation?

Using a cell culture system, the team, led by postdoctoral researcher David Steger, PhD, probed genes involved in fat-cell development and function for chromatin changes that were associated with the start of mature fat-cell formation. They found chromatin changes near a gene encoding the master regulator of differentiation, PPAR-gamma, which is also a target of anti-diabetic drugs.

"That gave us confidence to interrogate the whole genome," Lazar says.

The team scanned the genome for regions that were modified within 24 hours of the onset of fat-cell differentiation and analyzed those regions for potential binding sites for proteins that induce the expression of other genes. These proteins activate the genes whose proteins cause changes in cellular behavior and function.

Complex Control System
The researchers found that many of the chromatin-modified regions contained binding sites for two proteins, CEBP-beta and the glucocorticoid receptor (GR). In turn, these proteins recruit additional proteins to their locations along chromosomes. The result is a protein complex that nudges the precursor fat cell to become a mature fat cell.

That the glucocorticoid receptor is part of this transition state is remarkable, Lazar says, in that the growth factor complex required to induce fat-cell formation includes dexamethasone, one type of gluococorticoid hormone. No one had ever considered why dexamethasone was required to make this transition happen, Lazar says. "The dexamethasone is stimulating the hormone receptor to bind transiently at this site and create the transition state.” This happens at dozens of sites in the cell genome, and the hormone is the coordinating signal.

On the basis of their findings, Lazar and his colleagues propose a model in which, upon stimulation of pre-fat cells, CEBP-beta, GR, and other proteins assemble near the PPAR-gamma gene and activate it. Once that happens, the circuit is on, even if the fat-cell-forming stimulus should disappear. In what the investigators call a “feedforward loop,” the PPAR-gamma protein induces its own expression, as well as that of another master regulatory gene, CEBP-alpha. CEBP-alpha, in turn, activates its expression as well as that of PPAR-gamma. More importantly, both proteins also induce the expression of fat-cell genes, thereby committing the cell to its ultimate fate.

“The idea that a transient hormone signal coordinates many locations throughout the genome in the process of making a fat cell is surprising and informative," Lazar says.

And that state – or rather, the molecular players that comprise it -- could provide a useful target for anti-obesity drug development, he adds.

The study was supported by the National Institutes for Diabetes, Digestive and Kidney Diseases, the George S. Cox Medical Research Institute, and by the Picower Foundation.

Penn Medicine is one of the world’s leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the University of Pennsylvania School of Medicine (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $3.6 billion enterprise.

Penn’s School of Medicine is currently ranked #2 in U.S. News & World Report’s survey of research-oriented medical schools, and is consistently among the nation’s top recipients of funding from the National Institutes of Health, with $367.2 million awarded in the 2008 fiscal year.

Penn Medicine’s patient care facilities include:

The Hospital of the University of Pennsylvania – the nation’s first teaching hospital, recognized as one of the nation’s top 10 hospitals by U.S. News & World Report.
Penn Presbyterian Medical Center – named one of the top 100 hospitals for cardiovascular care by Thomson Reuters for six years.
Pennsylvania Hospital – the nation’s first hospital, founded in 1751, nationally recognized for excellence in orthopaedics, obstetrics & gynecology, and behavioral health.

Additional patient care facilities and services include Penn Medicine at Rittenhouse, a Philadelphia campus offering inpatient rehabilitation and outpatient care in many specialties; as well as a primary care provider network; a faculty practice plan; home care and hospice services; and several multispecialty outpatient facilities across the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2009, Penn Medicine provided $733.5 million to benefit our community.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>