Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Drugstore within: Mesenchymal Stem Cells Protect and Heal

A stem cell that can morph into a number of different tissues is proving a natural protector, healer and antibiotic maker, researchers at Case Western Reserve University and their peers have found.

Mesenchymal stem cells reaped from bone marrow had been hailed as the key to growing new organs to replace those damaged or destroyed by violence or disease, but have failed to live up to the billing.

Instead, scientists who’d been trying to manipulate the cells to build replacement parts have been finding the cells are innately potent antidotes to a growing list of maladies.

The findings are summarized in the July 8 issue of Cell Stem Cell.

The cell, referred to as an MSC, “is a drugstore that functions at the local site of injury to provide all the medicine that site requires for its successful regeneration,” said Arnold Caplan, professor of biology at Case Western Reserve, and lead author of the paper.

Here’s how:

MSCs sit on every blood vessel in the body. When a blood vessel is injured or enflamed, the cells detach and jump into action.

“From the front end, the cell puts up a curtain of molecules which stop an overaggressive immune system from sending in cells to survey the damage – which, if successful, would mount an autoimmune response,” he said. “The back face of the MSC secretes molecules that set up a regenerative microenvironment so that the damaged tissue can repair itself and not make scar tissue.”

Researchers around the world have been using the cells in a broad range of preclinical animal models of disease and injury and in clinical trials during the last decade.

By injecting MSCs into damaged tissue or infusing them into the blood stream, the therapy appears to have muted damage or cured such diverse conditions and disorders as acute heart attack, stroke, kidney failure, tendonitis, juvenile diabetes, radiation syndrome, arthritis, amyotrophic lateral syndrome, burns, wounds and more.

The researchers have found that MSCs from one human do not cause an immune response in another, nor in animals injected with human MSCs.

Most of the research has been done using cells culled from bone marrow, but results using cells extracted from fat, placenta, umbilical cord and muscle have shown similar but not identical potential.

Which source of cell is the best for each disease or injury requires further investigation.

Recent work, led by the University of San Francisco scientists, shows the cell’s arsenal is even greater. They found the cells produce a protein that kills bacteria including E. coli and Staphylococcus aureus, and enhance clearance of the microbes from the body.

Because MSCs are showing themselves capable of far more than a foundation for tissue engineering, Caplan suggests the acronym should now stand for medicinal signaling cells.

Kevin Mayhood | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>