Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Drugstore within: Mesenchymal Stem Cells Protect and Heal

08.07.2011
A stem cell that can morph into a number of different tissues is proving a natural protector, healer and antibiotic maker, researchers at Case Western Reserve University and their peers have found.

Mesenchymal stem cells reaped from bone marrow had been hailed as the key to growing new organs to replace those damaged or destroyed by violence or disease, but have failed to live up to the billing.

Instead, scientists who’d been trying to manipulate the cells to build replacement parts have been finding the cells are innately potent antidotes to a growing list of maladies.

The findings are summarized in the July 8 issue of Cell Stem Cell.

The cell, referred to as an MSC, “is a drugstore that functions at the local site of injury to provide all the medicine that site requires for its successful regeneration,” said Arnold Caplan, professor of biology at Case Western Reserve, and lead author of the paper.

Here’s how:

MSCs sit on every blood vessel in the body. When a blood vessel is injured or enflamed, the cells detach and jump into action.

“From the front end, the cell puts up a curtain of molecules which stop an overaggressive immune system from sending in cells to survey the damage – which, if successful, would mount an autoimmune response,” he said. “The back face of the MSC secretes molecules that set up a regenerative microenvironment so that the damaged tissue can repair itself and not make scar tissue.”

Researchers around the world have been using the cells in a broad range of preclinical animal models of disease and injury and in clinical trials during the last decade.

By injecting MSCs into damaged tissue or infusing them into the blood stream, the therapy appears to have muted damage or cured such diverse conditions and disorders as acute heart attack, stroke, kidney failure, tendonitis, juvenile diabetes, radiation syndrome, arthritis, amyotrophic lateral syndrome, burns, wounds and more.

The researchers have found that MSCs from one human do not cause an immune response in another, nor in animals injected with human MSCs.

Most of the research has been done using cells culled from bone marrow, but results using cells extracted from fat, placenta, umbilical cord and muscle have shown similar but not identical potential.

Which source of cell is the best for each disease or injury requires further investigation.

Recent work, led by the University of San Francisco scientists, shows the cell’s arsenal is even greater. They found the cells produce a protein that kills bacteria including E. coli and Staphylococcus aureus, and enhance clearance of the microbes from the body.

Because MSCs are showing themselves capable of far more than a foundation for tissue engineering, Caplan suggests the acronym should now stand for medicinal signaling cells.

Kevin Mayhood | Newswise Science News
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>