Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Direct Line through the Brain to Avoid Rotten Food – A Full STOP Signal for Drosophila

06.12.2012
Odor activation of a dedicated neural pathway by geosmin, an odor produced by toxic microorganisms, activates a hard-wired avoidance response in the fly.

Consuming putrid food can be lethal as it allows bacterial pathogens to enter the digestive system. To detect signs of decay and thus allowing us and other animals to avoid such food poisoning is one of the main tasks of the sense of smell.


Geosmin, the typical earthy smell released by mold fungi and other microbes. In the picture is its chemical structure − a bicyclic alcohol − as well as a rotting orange infested with a Penicillium fungus. Although geosmin is very widely spread in nature, it is produced and released only by certain microbes.

Photo/Collage: Cell Press / Elsevier / Max Planck Institute for Chemical Ecology / Stensmyr

Behavioral scientists and neurobiologists at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now for the first time decoded the neural mechanisms underlying an escape reflex in fruit flies (Drosophila) activated in order to avoid eating and laying eggs in food infected by toxic microorganisms. A super-sensitive and completely dedicated neural line, from olfactory receptor, via sensory neuron and primary brain neurons, is activated as soon as the tiniest amount of geosmin is in the air. Geosmin is a substance released by bacteria and mold fungi toxic to the fly.

This stimulus overrides all other food odor signals, irrespective of how attractive they are on their own. Consequently, geosmin is a full STOP signal that prevents flies from eating and laying eggs in toxic food, similar to when we open the fridge and smell last week’s forgotten dinner. (CELL, December 7, 2012, DOI: 10.1016/j.cell.2012.09.046)

Healthy and unhealthy microbes

The shocking number of fatalities in Germany in spring 2011 linked to fenugreek sprouts contaminated with EHEC bacteria showed that it is crucial for every foraging organism to be able to distinguish between fresh food and that infested by pathogenic microbes. Food, whether meat or vegetables, is more or less always colonized by bacteria and other microbes, their numbers varying with differing degrees of freshness and storage conditions. Usually, the immune system can cope with microorganisms in the food. Consequently, if food decay is not too far advanced, animals can digest the food without harm. But what protects us and other animals when the concentration of toxin-producing and often pathogenic microbes has become dangerously high?

Rotten smell as warning signal
In many cases visual signs allow us to avoid putrid food – who wants to bite into a rotting orange anyway? A more direct and common signal, however, is perception of certain odors released by hazardous microbes and/or their activity. If these odors are detected, the food item is directly discarded, a behavior which saves lives. But which neural functions underlie such an avoidance or even flight behavior? What does the way from the odor molecule and the olfactory receptors into the brain and finally to the reaction of the animal look like?

Geosmin and the model Drosophila
The genetically very well characterized fruit or vinegar fly Drosophila melanogaster and related species are perfect study objects to answer such a question. The flies typically feed on yeasts growing on rotting fruit. This is the stage where they must distinguish between “good” and “bad” microbes, i.e. at which stage of decomposition the fruit is. In our experiments it was shown that flies consuming pathogenic bacteria or fungi died very fast, and eggs deposited did not result in viable larvae. The odor substance geosmin is known to be produced by several fungi and bacteria and may trigger deterrent reactions. Geosmin is responsible for a smell quite familiar to us: the strong scent of wet soils, especially after droughts. The human nose is highly sensitive to this odor and can detect it at concentrations as low as 0,1 ppb (parts per billion). Max Planck scientists now found that Drosophila antennae are even more sensitive to geosmin.

“We started with electrophysiological experiments and analyzed all olfactory sensory neurons on the fly antenna successively – more than thousand measurements,” says Marcus Stensmyr, first author of the study. Already at this stage, the first unexpected result became obvious: Only a single neuron type labeled “ab4B” responded to geosmin. These neurons carry the specific receptor Or56a, which we could show reacts exclusively to geosmin. The specificity could be established both in single neuron recordings linked to gas chromatography, where more than 3000 odors were tested, and in experiments using cell cultures ectopically expressing the receptor. Optical imaging of the Drosophila brain revealed another interesting result: From the approximately 50 glomeruli that constitute the antennal lobe, the olfactory center of the flies, only one, labeled DA2, was activated by geosmin. DA2 was found in the same region as other glomeruli that are involved in odor-evoked aversive behavior (see press release “Flies Process Attractive and Deterrent Odors in Different Brain Areas − Newly developed analytic device Flywalk allows accurate studies of insect behavior to be made”, April 25, 2012). Stimulation of DA2 resulted in activation of a single type of a specific projection neuron (PN) conveying the message regarding geosmin presence to higher brain areas. PNs are otherwise often more broadly tuned, providing a cross-glomerulus pattern for olfactory coding. “However, this is different in the case of geosmin, Or56a, DA2 and the related PNs,” says Bill Hansson, leader of the study. In this circuit, the stimulus is directly patched through from antenna to behavior, without any detours. Until now, such patterns have only been measured in the responses to sex pheromones, if that is at all comparable, report the scientists. For the first time, we see a fully dedicated neural line for an odor involved in feeding behavior.

“Flywalk” experiments confirm laboratory measurements
Behavioral assays using the recently established “Flywalk” system confirm the nerve and brain measurements in the laboratory. In the “Flywalk”, single fruit flies are placed into small glass tubes, different odors are applied, and the behavior of the flies is recorded by a camera connected directly to a computer quantifying the behavior.
The geosmin stimulus, mediated through the dedicated neural line, does not only cause the flies to stop or move away from the odor source, it also overrides all simultaneously offered highly attractive odors, such as vinegar or fruit scents, at minute concentrations. This means that flies are programmed to avoid geosmin even in a mixture of different smells and will thus not be tempted to consume pathogens accidentally. This is important, because odor mixtures are the rule and not an exception in a natural environment. The response to geosmin is so strong that it also regulates oviposition behavior in females: female Drosophila laid their fertilized eggs only on substrates overgrown with ordinary yeast; they strictly avoided culture media containing the highly pathogenic geosmin producing bacterium Streptomyces coelicolor. In a Streptomyces mutant deficient in its geosmin-producing enzyme, the flies did, however, oviposit, and the larvae consequently died. Geosmin is thus sufficient and necessary to elicit the avoidance behavior. [BSH/JWK]

Original Publication:
Marcus C. Stensmyr, Hany K. M. Dweck, Abu Farhan, Irene Ibba, Antonia Strutz, Latha Mukunda, Jeanine Linz, Kathrin Steck, Sofia Lavista-Llanos, Dieter Wicher, Silke Sachse, Markus Knaden, Paul G. Becher, Yoichi Seki, Bill S. Hansson (2012).
A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila.
CELL, December 7, DOI: 10.1016/j.cell.2012.09.046
http://dx.doi.org/10.1016/j.cell.2012.09.046
Further Information:
Prof. Dr. Bill S. Hansson, MPI Chemical Ecology, hansson@ice.mpg.de, +49 (0)3641 571401
Dr. Marcus C. Stensmyr, MPI Chemical Ecology, mstensmyr@ice.mpg.de, +49 (0)3641 571420

Picture Requests:
Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de

More articles from Life Sciences:

nachricht New Antibody Portal Bolsters Biomedical Research Reliability
27.07.2015 | University of North Carolina School of Medicine

nachricht Insights into catalytic converters
27.07.2015 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Young Scientist Discovers Magnetic Material Unnecessary to Create Spin Current

27.07.2015 | Materials Sciences

Superfast fluorescence sets new speed record

27.07.2015 | Information Technology

Ultra-Thin Hollow Nanocages Could Reduce Platinum Use in Fuel Cell Electrodes

27.07.2015 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>