Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Direct Line through the Brain to Avoid Rotten Food – A Full STOP Signal for Drosophila

06.12.2012
Odor activation of a dedicated neural pathway by geosmin, an odor produced by toxic microorganisms, activates a hard-wired avoidance response in the fly.

Consuming putrid food can be lethal as it allows bacterial pathogens to enter the digestive system. To detect signs of decay and thus allowing us and other animals to avoid such food poisoning is one of the main tasks of the sense of smell.


Geosmin, the typical earthy smell released by mold fungi and other microbes. In the picture is its chemical structure − a bicyclic alcohol − as well as a rotting orange infested with a Penicillium fungus. Although geosmin is very widely spread in nature, it is produced and released only by certain microbes.

Photo/Collage: Cell Press / Elsevier / Max Planck Institute for Chemical Ecology / Stensmyr

Behavioral scientists and neurobiologists at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now for the first time decoded the neural mechanisms underlying an escape reflex in fruit flies (Drosophila) activated in order to avoid eating and laying eggs in food infected by toxic microorganisms. A super-sensitive and completely dedicated neural line, from olfactory receptor, via sensory neuron and primary brain neurons, is activated as soon as the tiniest amount of geosmin is in the air. Geosmin is a substance released by bacteria and mold fungi toxic to the fly.

This stimulus overrides all other food odor signals, irrespective of how attractive they are on their own. Consequently, geosmin is a full STOP signal that prevents flies from eating and laying eggs in toxic food, similar to when we open the fridge and smell last week’s forgotten dinner. (CELL, December 7, 2012, DOI: 10.1016/j.cell.2012.09.046)

Healthy and unhealthy microbes

The shocking number of fatalities in Germany in spring 2011 linked to fenugreek sprouts contaminated with EHEC bacteria showed that it is crucial for every foraging organism to be able to distinguish between fresh food and that infested by pathogenic microbes. Food, whether meat or vegetables, is more or less always colonized by bacteria and other microbes, their numbers varying with differing degrees of freshness and storage conditions. Usually, the immune system can cope with microorganisms in the food. Consequently, if food decay is not too far advanced, animals can digest the food without harm. But what protects us and other animals when the concentration of toxin-producing and often pathogenic microbes has become dangerously high?

Rotten smell as warning signal
In many cases visual signs allow us to avoid putrid food – who wants to bite into a rotting orange anyway? A more direct and common signal, however, is perception of certain odors released by hazardous microbes and/or their activity. If these odors are detected, the food item is directly discarded, a behavior which saves lives. But which neural functions underlie such an avoidance or even flight behavior? What does the way from the odor molecule and the olfactory receptors into the brain and finally to the reaction of the animal look like?

Geosmin and the model Drosophila
The genetically very well characterized fruit or vinegar fly Drosophila melanogaster and related species are perfect study objects to answer such a question. The flies typically feed on yeasts growing on rotting fruit. This is the stage where they must distinguish between “good” and “bad” microbes, i.e. at which stage of decomposition the fruit is. In our experiments it was shown that flies consuming pathogenic bacteria or fungi died very fast, and eggs deposited did not result in viable larvae. The odor substance geosmin is known to be produced by several fungi and bacteria and may trigger deterrent reactions. Geosmin is responsible for a smell quite familiar to us: the strong scent of wet soils, especially after droughts. The human nose is highly sensitive to this odor and can detect it at concentrations as low as 0,1 ppb (parts per billion). Max Planck scientists now found that Drosophila antennae are even more sensitive to geosmin.

“We started with electrophysiological experiments and analyzed all olfactory sensory neurons on the fly antenna successively – more than thousand measurements,” says Marcus Stensmyr, first author of the study. Already at this stage, the first unexpected result became obvious: Only a single neuron type labeled “ab4B” responded to geosmin. These neurons carry the specific receptor Or56a, which we could show reacts exclusively to geosmin. The specificity could be established both in single neuron recordings linked to gas chromatography, where more than 3000 odors were tested, and in experiments using cell cultures ectopically expressing the receptor. Optical imaging of the Drosophila brain revealed another interesting result: From the approximately 50 glomeruli that constitute the antennal lobe, the olfactory center of the flies, only one, labeled DA2, was activated by geosmin. DA2 was found in the same region as other glomeruli that are involved in odor-evoked aversive behavior (see press release “Flies Process Attractive and Deterrent Odors in Different Brain Areas − Newly developed analytic device Flywalk allows accurate studies of insect behavior to be made”, April 25, 2012). Stimulation of DA2 resulted in activation of a single type of a specific projection neuron (PN) conveying the message regarding geosmin presence to higher brain areas. PNs are otherwise often more broadly tuned, providing a cross-glomerulus pattern for olfactory coding. “However, this is different in the case of geosmin, Or56a, DA2 and the related PNs,” says Bill Hansson, leader of the study. In this circuit, the stimulus is directly patched through from antenna to behavior, without any detours. Until now, such patterns have only been measured in the responses to sex pheromones, if that is at all comparable, report the scientists. For the first time, we see a fully dedicated neural line for an odor involved in feeding behavior.

“Flywalk” experiments confirm laboratory measurements
Behavioral assays using the recently established “Flywalk” system confirm the nerve and brain measurements in the laboratory. In the “Flywalk”, single fruit flies are placed into small glass tubes, different odors are applied, and the behavior of the flies is recorded by a camera connected directly to a computer quantifying the behavior.
The geosmin stimulus, mediated through the dedicated neural line, does not only cause the flies to stop or move away from the odor source, it also overrides all simultaneously offered highly attractive odors, such as vinegar or fruit scents, at minute concentrations. This means that flies are programmed to avoid geosmin even in a mixture of different smells and will thus not be tempted to consume pathogens accidentally. This is important, because odor mixtures are the rule and not an exception in a natural environment. The response to geosmin is so strong that it also regulates oviposition behavior in females: female Drosophila laid their fertilized eggs only on substrates overgrown with ordinary yeast; they strictly avoided culture media containing the highly pathogenic geosmin producing bacterium Streptomyces coelicolor. In a Streptomyces mutant deficient in its geosmin-producing enzyme, the flies did, however, oviposit, and the larvae consequently died. Geosmin is thus sufficient and necessary to elicit the avoidance behavior. [BSH/JWK]

Original Publication:
Marcus C. Stensmyr, Hany K. M. Dweck, Abu Farhan, Irene Ibba, Antonia Strutz, Latha Mukunda, Jeanine Linz, Kathrin Steck, Sofia Lavista-Llanos, Dieter Wicher, Silke Sachse, Markus Knaden, Paul G. Becher, Yoichi Seki, Bill S. Hansson (2012).
A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila.
CELL, December 7, DOI: 10.1016/j.cell.2012.09.046
http://dx.doi.org/10.1016/j.cell.2012.09.046
Further Information:
Prof. Dr. Bill S. Hansson, MPI Chemical Ecology, hansson@ice.mpg.de, +49 (0)3641 571401
Dr. Marcus C. Stensmyr, MPI Chemical Ecology, mstensmyr@ice.mpg.de, +49 (0)3641 571420

Picture Requests:
Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de

Dr. Jan-Wolfhard Kellmann | Max-Planck-Institut
Further information:
http://www.ice.mpg.de

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>