Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A digital field guide to cancer cells

09.04.2015

Scientists are mapping the habits of cancer cells, turn by microscopic turn.

Using advanced technology and an approach that merges engineering and medicine, a Yale University-led team has compiled some of the most sophisticated data yet on the elaborate signaling networks directing highly invasive cancer cells. Think of it as a digital field guide for a deadly scourge.


Yale-led research is looking into the directional cues that influence cancer cells.

Credit: Yale University/Michael Helfenbein

"This is a very complex set of interactions and processes," said Andre Levchenko, a Yale systems biologist and biomedical engineer, and director of the Yale Systems Biology Institute. "The systems biology approach acknowledges that complexity by analyzing how cancer cells migrate together and separately in response to complex cues."

In a study published April 8 in the journal Nature Communications, Levchenko and his colleagues describe the intricate ways breast cancer cells respond to chemical cues in the human body. The idea is to determine which cues cause cancer cells to disperse and metastasize, how these cues are combined with other cues directing the invasion, and which cues hold sway when there are conflicting orders.

Until now, little has been known about how cells decide when and where to turn while traveling through the complex tissues. These cells often encounter contradictory directional cues -- begging the questions: Which cues are stronger, and in what situations?

In this study, researchers focused on several cues. One is a protein called Epidermal Growth Factor (EGF), which acts as a strong, directional guidance signal to individual cancer cells. Another cue mediates a poorly understood phenomenon called "contact inhibition of locomotion" (CIL), in which cells act almost like bumper cars, stopping their forward motion on contact and moving away from each other.

Levchenko's team found that when both EGF and CIL signals act upon a breast cancer cell, the cell acts as a tiny computer, making decisions about which cue dominates. If the EGF cue is weak, the cell can turn around if it encounters another cell; if the EGF cue is strong enough, the two cells will travel together. The researchers unraveled the molecular network that allows the cells to follow these cues and make appropriate decisions. In particular, they found the critical role of proteins called ephrins in mediating the CIL cue. These proteins, also found in other cell types, allow breast cancer cells to be repelled from each other, while ignoring other cells, such as fibroblasts. This knowledge allowed the investigators to suppress CIL, so that even weak EGF inputs could lead to coordinated movement of many cells.

"We have shown that migrating cells prioritize certain cues in the presence of others and thus can switch their migration mode, depending on what they see from the environment," said first author Benjamin Lin, a postdoctoral associate in biomedical engineering at Yale.

Understanding the interplay of these signals may allow researchers to devise strategies for interfering with, or redirecting, cancer cells in motion. For example, if a traveling cancer cell received strong, artificial CIL cues so that its movement became less directed and invasive, and more chaotic, could that slow the onset of metastasis?

Historically, experiments on cancer cell movement have been unable to mimic the dynamic complexity of the human body. Now, using advanced biosensors and other technology, such experiments come much closer to replicating a realistic, biological environment.

"Scientists have studied quite well how individual cues affect cell migration. But in reality, cells are subject to multiple cues at the same time," said co-author Takanari Inoue, an associate professor at Johns Hopkins University. "Our work is significant because we clearly demonstrated that cells do integrate multiple pieces of information and that the integration occurs at a place fairly upstream of the signal processing. I think we have been underestimating these cells' capability to integrate different cues."

###

Additional authors of the paper are Taofei Yin and Yi Wu of the University of Connecticut.

Media Contact

Jim Shelton
james.shelton@yale.edu
203-432-3881

 @yale

http://www.yale.edu 

Jim Shelton | EurekAlert!

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>