Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Diet for the Cell: Keeping the DNA Fit with Fewer Calories

08.10.2014

Molecular biologists from Heidelberg show how the nutrient status of cells can influence their response to damaged DNA

Cells are generally able to repair spontaneous damage that arises in their genetic material. Unfortunately, the DNA repair process is not perfect and sometimes, damaged DNA gets passed on to newly made cells.

A team of researchers at the Center for Molecular Biology of Heidelberg University (ZMBH) has recently discovered that in yeast cells, the amount of nutrients that cells are exposed to can affect DNA surveillance and repair mechanisms and therefore the quality of their DNA. According to the research group leader, Dr. Brian Luke, this could potentially lead to new strategies to improve cancer therapies. Their findings have been published in the journal “Cell Reports”.

Cells harbour genetic material in the form of DNA, which contains all the information required for the cell to function. Every time a cell divides this information has to be precisely copied so that the newly made cell receives a perfect replica in order that it, too, can function properly.

The inheritance of damaged DNA, however, must be inhibited. In order to recognise altered DNA and prevent it from getting passed on to daughter cells, cells have developed surveillance mechanisms, or checkpoints. Checkpoints stop cells from dividing; thereby allowing more time for the cell to repair damaged genetic material.

In some cases, however, the DNA cannot be efficiently repaired even though the checkpoints have been activated. If DNA damage persists for a very long time the cells may eventually turn the checkpoints off without waiting for the DNA to get repaired. This process, referred to as adaptation, may initially seem advantageous to the cell because it can finally grow again. “However, for the whole organism, adaptation is often dangerous, as the unrepaired DNA may lead to diseases such as cancer,” points out Dr. Luke.

The molecular biologists Julia Klermund and Katharina Bender in the team of Brian Luke have found a way to prevent cells from turning off the checkpoint and therefore increase the time available for repair, while at the same time preventing damaged DNA from getting passed to newly made cells. The researchers discovered that the amount of nutrients in the cellular environment is a major factor influencing this process.

When cells with DNA damage are exposed to low levels of nutrients, they do not adapt and instead remain fully arrested with an active checkpoint. The same effect was observed when cells with DNA damage were treated with the drug “rapamycin”, which inhibits metabolic signalling and therefore mimics nutrient starvation.

“The cells that are in low nutrient conditions end up being much more viable, likely because they have waited for the damaged DNA to be repaired before starting to divide again,” explains Julia Klermund. “We believe that high nutrients are pushing cells to grow and proliferate even when the cells should not, e.g. with damaged DNA. Low nutrient conditions likely ensure that cells will only ‘risk’ dividing when the DNA has been completely repaired,” adds Dr. Luke.

According to the Heidelberg scientist, research from the U.S.A. has recently demonstrated that nutrient starvation or rapamycin treatment can extend cell lifespan and also improve the efficacy of some types of chemotherapy. Brian Luke believes the study at the ZMBH may add important mechanistic details regarding how these effects are achieved and provides clues for further enhancement.

Dr. Luke is a member of the DKFZ-ZMBH Alliance, a strategic collaboration between the German Cancer Research Center (DKFZ) and the Center for Molecular Biology of Heidelberg University. The research group of Dr. Luke is a member of the Network Aging Research (NAR). This work was initially funded by Heidelberg University’s FRONTIER programme and eventually by the Collaborative Research Centre “Cellular Surveillance and Damage Response” (SFB 1036). Julia Klermund and Katharina Bender are PhD students in the team of Brian Luke.

Original Publication:
J. Klermund, K. Bender and B. Luke: High nutrient levels and TORC1 activity reduce cell viability following prolonged telomere dysfunction and cell cycle arrest. Cell Reports (published online 25 September 2014), doi: 10.1016/j.celrep.2014.08.053

Contact:
Dr. Brian Luke
Center for Molecular Biology of Heidelberg University (ZMBH)
Phone: +49 6221 54-6897
b.luke@zmbh.uni-heidelberg.de

Heidelberg University
Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.zmbh.uni-heidelberg.de/luke

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>