Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Diet for the Cell: Keeping the DNA Fit with Fewer Calories


Molecular biologists from Heidelberg show how the nutrient status of cells can influence their response to damaged DNA

Cells are generally able to repair spontaneous damage that arises in their genetic material. Unfortunately, the DNA repair process is not perfect and sometimes, damaged DNA gets passed on to newly made cells.

A team of researchers at the Center for Molecular Biology of Heidelberg University (ZMBH) has recently discovered that in yeast cells, the amount of nutrients that cells are exposed to can affect DNA surveillance and repair mechanisms and therefore the quality of their DNA. According to the research group leader, Dr. Brian Luke, this could potentially lead to new strategies to improve cancer therapies. Their findings have been published in the journal “Cell Reports”.

Cells harbour genetic material in the form of DNA, which contains all the information required for the cell to function. Every time a cell divides this information has to be precisely copied so that the newly made cell receives a perfect replica in order that it, too, can function properly.

The inheritance of damaged DNA, however, must be inhibited. In order to recognise altered DNA and prevent it from getting passed on to daughter cells, cells have developed surveillance mechanisms, or checkpoints. Checkpoints stop cells from dividing; thereby allowing more time for the cell to repair damaged genetic material.

In some cases, however, the DNA cannot be efficiently repaired even though the checkpoints have been activated. If DNA damage persists for a very long time the cells may eventually turn the checkpoints off without waiting for the DNA to get repaired. This process, referred to as adaptation, may initially seem advantageous to the cell because it can finally grow again. “However, for the whole organism, adaptation is often dangerous, as the unrepaired DNA may lead to diseases such as cancer,” points out Dr. Luke.

The molecular biologists Julia Klermund and Katharina Bender in the team of Brian Luke have found a way to prevent cells from turning off the checkpoint and therefore increase the time available for repair, while at the same time preventing damaged DNA from getting passed to newly made cells. The researchers discovered that the amount of nutrients in the cellular environment is a major factor influencing this process.

When cells with DNA damage are exposed to low levels of nutrients, they do not adapt and instead remain fully arrested with an active checkpoint. The same effect was observed when cells with DNA damage were treated with the drug “rapamycin”, which inhibits metabolic signalling and therefore mimics nutrient starvation.

“The cells that are in low nutrient conditions end up being much more viable, likely because they have waited for the damaged DNA to be repaired before starting to divide again,” explains Julia Klermund. “We believe that high nutrients are pushing cells to grow and proliferate even when the cells should not, e.g. with damaged DNA. Low nutrient conditions likely ensure that cells will only ‘risk’ dividing when the DNA has been completely repaired,” adds Dr. Luke.

According to the Heidelberg scientist, research from the U.S.A. has recently demonstrated that nutrient starvation or rapamycin treatment can extend cell lifespan and also improve the efficacy of some types of chemotherapy. Brian Luke believes the study at the ZMBH may add important mechanistic details regarding how these effects are achieved and provides clues for further enhancement.

Dr. Luke is a member of the DKFZ-ZMBH Alliance, a strategic collaboration between the German Cancer Research Center (DKFZ) and the Center for Molecular Biology of Heidelberg University. The research group of Dr. Luke is a member of the Network Aging Research (NAR). This work was initially funded by Heidelberg University’s FRONTIER programme and eventually by the Collaborative Research Centre “Cellular Surveillance and Damage Response” (SFB 1036). Julia Klermund and Katharina Bender are PhD students in the team of Brian Luke.

Original Publication:
J. Klermund, K. Bender and B. Luke: High nutrient levels and TORC1 activity reduce cell viability following prolonged telomere dysfunction and cell cycle arrest. Cell Reports (published online 25 September 2014), doi: 10.1016/j.celrep.2014.08.053

Dr. Brian Luke
Center for Molecular Biology of Heidelberg University (ZMBH)
Phone: +49 6221 54-6897

Heidelberg University
Communications and Marketing
Press Office, phone: +49 6221 54-2311

Weitere Informationen:

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>