Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Dicty mystery solved

28.05.2010
Rice researchers find first to starve in slime mold thrive at others' expense

The title sounds like a crime novel on a dime-store shelf. But "An Invitation to Die" is quite literal in its meaning. And the prime suspect is very, very small.

Rice University evolutionary biologists reported in a paper published this week that the first cells to starve in a slime mold seem to have an advantage that not only helps them survive to reproduce, but also pushes those that keep on eating into sacrificing themselves for the common good.

The paper by Rice graduate student Jennie Kuzdzal-Fick and her mentors, David Queller and Joan Strassmann, Rice's Harry C. and Olga K. Wiess Professors of Ecology and Evolutionary Biology, appears in the online edition of the Royal Society journal Biology Letters. The paper's full title is "An Invitation to Die: Initiators of Sociality in a Social Amoeba Become Selfish Spores."

It helps to understand what Dictyostelium discoideum are, and how they behave. The single-cell organisms collectively known as slime mold live independently and feed on bacteria – until the food runs out. When that happens, adjacent cells aggregate into a single slug and move as a slime-coated unit toward heat and light, which indicate the presence of a good place to form a fruiting body. At their destination, amoebas at the front sacrifice themselves, dying to form a cellulose stalk. Others in the colony climb aboard and become spores that sit on top, where small organisms disperse them to nutrient-rich places.

Common wisdom dictates that the first cells to starve would be the first to die. "Because they initiate aggregation into the social stage, we were interested in finding out what their reproductive fate was," Kuzdzal-Fick said. "For a lot of reasons, it would make more sense if the first cells to starve altruistically formed the stalk."

But that's not how it happens, and it took her months of detective work to track down the clues. Kuzdzal-Fick employed a complex sequence of raising, selectively starving and recombining clones of D. discoideum so that pre-starved cells could be tracked.

When the organisms were allowed to form fruiting bodies of stalks and spores, fluorescent tags revealed that pre-starved cells made up a much higher percentage of the spores than expected.

"They ought to be weaker than the other cells," Queller said. "They're starving first. But when they're under development, they turn on whole sets of genes that do all the things they need to do in development, and among those genes are probably ones for offense and defense. They're deploying the tools to obtain their preferred outcome -- which is to be in the spores -- before the other guys are doing it."

"You could view them like an army, where one side is still polishing its weapons, but the other side has seen them and is putting bullets in their guns," Strassmann said. "Even though they may be hungry and have worse weapons, they see the enemy and they're turning on those weapons."

Strassmann said Kuzdzal-Fick has a way with single-cell beings. "This experiment turned out to be technically very difficult, and anyone else would have had a hard time completing this study. She's just a wizard at getting these things to behave," Strassmann said of her graduate student, who also worked in the Strassmann-Queller lab as an undergraduate at Rice. Kuzdzal-Fick expects to defend her thesis in the fall.

"Our best students really pay attention to their cells," Strassmann said. "They listen to their organisms. They know if their cells are happy, they know if they're not.

"If you have a sick lion or zebra, or even a sick mouse or wasp or fly, they look droopy and you can see it. You have to develop that exact same sense for a single-celled organism you can see only through the microscope."

Read the abstract at: http://rsbl.royalsocietypublishing.org/content/early/2010/05/20/

rsbl.2010.0257.abstract

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

nachricht Exposure to fracking chemicals and wastewater spurs fat cell development
22.06.2018 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Towards universal influenza vaccines – is Neuraminidase underrated?

22.06.2018 | Life Sciences

Thermal Radiation from Tiny Particles

22.06.2018 | Physics and Astronomy

Polar ice may be softer than we thought

22.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>