Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing a diagnosis: How an eye test could aid Alzheimer's detection

18.01.2010
A simple and inexpensive eye test could aid detection and diagnosis of major neurological diseases such as Alzheimer's at an earlier stage than is currently possible, according to new research by UCL scientists.

The research, led by Professors Francesca Cordeiro & Stephen Moss and published today in Cell Death & Disease, demonstrates a new technique that enables retinal, and therefore brain cell death, to be directly measured in real time. The method, demonstrated in an animal model, could not only refine diagnosis of neurodegenerative disorders and help track disease progress; it could also aid the assessment and development of new treatments.

The technique uses fluorescent markers that attach themselves to the relevant cells and indicate the stage of cell death. The retina is then observed using a customised laser ophthalmoscope. Until now, this kind of technique has only been used in cells in the lab, rather than in live animals. This research is therefore the first ever in vivo demonstration of retinal nerve cell death in Alzheimer's Disease.

Professor Cordeiro, UCL Institute of Ophthalmology, said: "The death of nerve cells is the key event in all neurodegenerative disorders – but until now it has not been possible to study cell death in real time. This technique means we should be able to directly observe retinal nerve cell death in patients, which has a number of advantages in terms of effective diagnosis. This could be critically important since identification of the early stages could lead to successful reversal of the disease progression with treatment.

"Currently, the biggest obstacle to research into new treatments for neurodegenerative diseases is the lack of a technique where the brain's response to new treatments can be directly assessed – this technique could potentially help overcome that."

Although this paper outlines the technique in animal models (rats and mice), Professor Cordeiro's team are further along with work using the same technique to detect and assess glaucoma, and will be conducting their first patient trials later this year.

She added: "The equipment used for this research was customised to suit animal models but is essentially the same as is used in hospitals and clinics worldwide. It is also inexpensive and non-invasive, which makes us fairly confident that we can progress quickly to its use in patients.

"Few people realise that the retina is a direct, albeit thin, extension of the brain. It is entirely possible that in the future a visit to a high-street optician to check on your eyesight will also be a check on the state of your brain."

The research was supported by funding from The Wellcome Trust and The Foundation Fighting Blindness. The project has also been supported by UCL Business proof of concept funds and two patents have been filed around this technology.

Notes to Editors

1.) For more information or to interview the researchers quoted, please contact Ruth Howells in the UCL Media Relations Office on tel: +44 (0)20 7679 9739, mobile: +07790 675 947, email: ruth.howells@ucl.ac.uk

2.) The paper, 'Imaging multiple phases of neurodegeneration: a novel approach to assessing cell death in vivo', is published today in Cell Death & Disease. For copies of the paper, please contact UCL Media Relations. This new journal is published by the Nature Publishing Group.

3.) Images are available from UCL Media Relations. Caption: Retinal cell death in the Alzheimer Triple Transgenic model. Retinal images of a living 14-month Alzheimer Triple Transgenic (3xTg-AD (a) compared to an aged control living mouse (b). Many more retinal nerve cells are in the early phase of apoptosis (green spots) in the Alzheimer mouse.

About UCL

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. UCL is the fourth-ranked university in the 2009 THES-QS World University Rankings. UCL alumni include Marie Stopes, Jonathan Dimbleby, Lord Woolf, Alexander Graham Bell, and members of the band Coldplay. UCL currently has over 12,000 undergraduate and 8,000 postgraduate students. Its annual income is over £600 million.

About UCL Business

UCL Business PLC (UCLB) is responsible for commercialising research across all disciplines generated from within UCL and associated organisations. It is primarily responsible for protecting inventions and transacting commercial activity including options, licences and collaborative commercial research. UCLB also has responsibility for creating and spinning-out companies from UCL. UCLB is wholly-owned by UCL and operates as an independent company with its own Board of Directors.

Ruth Howells | EurekAlert!
Further information:
http://www.ucl.ac.uk

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>