Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A deeper look into the pathogen responsible for crown gall disease in plants

11.07.2012
Next week's Journal of Biological Chemistry "Paper of the Week" by Wai Mun Huang and colleagues at the University of Utah Health Sciences Center and the University of Minnesota reveals new insights into the molecular properties of the rod-shaped soil bacterium Agrobacterium tumefaciens, the pathogen responsible for crown gall disease, a tumor-forming infection in plants, such as tomatoes, walnuts, grapes and beets.

The bacterium is parasitic: It infects its plant host by entering through an open wound, inserts a small segment of its genetic code into the plant's genome, devours energy made by the plant, and forms knobby brown lesions on the plant stem.

Huang's group focused on the pathogen's genetic material. Most bacteria have circular chromosomes. But A. tumefaciens C58, the strain studied by Huang's group, contains one circular chromosome and one linear chromosome (along with two circular plasmids). Huang's research illuminates how this bacterium maintains its linear chromosome.

Huang's team ascertained the DNA sequence for the telomeres, or the protective end caps, of the linear chromosome in A. tumefaciens C58 and confirmed that an enzyme, TelA, actually forms them by making hairpin loops. These end caps are important for maintaining the stability of linear chromosomes. Interestingly, TelA also binds the telomeres. This activity is unique among bacterial enzymes of this kind and may protect the telomeres (which degrade over time and thus lose their ability to preserve DNA), as telomere binding proteins do in eukaryotes.

"Hairpin-ended linear chromosomes and plasmids are found in a number of branches of bacteria and viruses," Huang says. "They are simple and elegant to form and to maintain." But what remains to be understood is why this linear configuration is not more common or even the preferred configuration for bacteria, Huang emphasizes.

From the article: "Linear chromosome generating system of Agrobacterium tumefaciens C58: Protelomerase generates and protects hairpin ends" by Wai Mun Huang, Jeanne DaGloria, Heather Fox, Qiurong Ruan, John Tillou, Ke Shi, Hideki Aihara, John Aron, and Sherwood Casjens

Link to Paper in Press version of article: http://bit.ly/MfBz8C

Corresponding author: Wai Mun Huang, University of Utah Health Sciences Center, Salt Lake City, UT, USA; email: waimun.huang@path.utah.edu

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit www.asbmb.org.

Written by Danielle Gutierrez

Angela Hopp | EurekAlert!
Further information:
http://www.asbmb.org

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>