Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Convincing Mimic: Scientists Report Octopus Imitating Flounder in the Atlantic

04.03.2010
Remarkable Strategy Evolved to Avoid Predators

On the open sand plains of the Caribbean seafloor, where soft-bodied animals are routinely exposed to predators, camouflage can be key to survival. Perhaps no group of animals is quite as adept at blending in with its surroundings as cephalopods, who along with relatives the cuttlefish and squid, have evolved a unique skin system that can instantaneously change their appearance.

In the February 2010 issue of The Biological Bulletin, MBL Senior Scientist and cephalopod expert Roger Hanlon and his colleagues report the exceptional camouflage capabilities of the Atlantic longarm octopus, Macrotritopus defilippi, whose strategy for avoiding predators includes expertly disguising itself as a flounder. While Hanlon and others have documented two other species of octopuses imitating flounder in Indonesian waters, this is the first report of flounder mimicry by an Atlantic octopus, and only the fourth convincing case of mimicry for cephalopods.

Comparing still photographs and video footage from five Caribbean locations collected over the last decade, Hanlon and co-authors, MBL graduate students Anya Watson and Alexandra Barbosa, observed uncanny similarities between the small and delicate octopus and the peacock flounder, Bothus lunatus, one of the most common sand dwellers in the Caribbean. They compared not only coloration, which in each animal resembled the sandy seafloor, but swimming speed and form.

Just like flounder, the octopuses contoured their bodies to hug the wavy seafloor, tapering their arms behind them. They also swam with the same fits and starts as flounder at the same speeds. Interestingly, the octopuses mimicked flounder only when swimming, when movement would compromise their camouflage. How well the animals blended in with their background differed. The octopus showed more highly controlled and rapid skin patterning than the flounder, whose camouflage was slower and less precise.

“We were equally impressed with the remarkable camouflage of this small octopus species even when it was stationary yet entirely exposed on top of the open sand,” says Hanlon. “The apparent match in pattern, color, brightness, and even 3-dimensional skin texture was noteworthy even when compared to other changeable cephalopods. They also demonstrated an unusual form of disruptive camouflage.”

So why do Atlantic longarm octopuses choose to imitate flounder as a way to avoid the threat of predators? More study of cephalopod mimicry is needed, but a possible explanation, according to Hanlon and his team, could be that predators who could easily take a bite out of the small, soft octopus might find a rigid flatfish like the flounder too much of a mouthful and avoid them.

This research was supported by grants from the Sholley Foundation, Office of Naval Research, Our World-Underwater Scholarship Society, and Fundacao para a Ciencia e a Tecnologia, Portugal.

For a copy of the paper, please contact Carol Schachinger at cschachi@mbl.edu.

Published since 1897 by the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts, The Biological Bulletin is one of America's oldest, peer-reviewed scientific journals. It publishes outstanding experimental research on the full range of biological topics and organisms, from the fields of Neuroscience, Behavior, Physiology, Ecology, Evolution, Development, Reproduction, Cell Biology, Biomechanics, Symbiosis, and Systematics; and it especially invites articles about those novel phenomena and contexts characteristic of intersecting fields. The electronic version, Biological Bulletin Online, contains the full content of each issue, including all figures and tables, beginning with the February 2001 issue. PDF files of the entire archive from 1897-2000 are also available.

The MBL is a leading international, independent, nonprofit institution dedicated to discovery and to improving the human condition through creative research and education in the biological, biomedical and environmental sciences. Founded in 1888 as the Marine Biological Laboratory, the MBL is the oldest private marine laboratory in the Americas. For more information, visit www.MBL.edu.

Gina Hebert | EurekAlert!
Further information:
http://www.MBL.edu
http://www.mbl.edu/news/press_releases/2010_pr_03_03.html

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>