Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A complex logic circuit made from bacterial genes

15.10.2012
The circuit is designed to act as the controller in synthetic bacteria that monitor and modify their environment

By force of habit we tend to assume computers are made of silicon, but there is actually no necessary connection between the machine and the material. All that an engineer needs to do to make a computer is to find a way to build logic gates — the elementary building blocks of digital computers — in whatever material is handy.

So logic gates could theoretically be made of pipes of water, channels for billiard balls or even mazes for soldier crabs.

By comparison Tae Seok Moon’s ambition, which is to build logic gates out of genes, seems eminently practical. As a postdoctoral fellow in the lab of Christopher Voigt, PhD, a synthetic biologist at the Massachusetts Institute of Technology, he recently made the largest gene (or genetic) circuit yet reported.

Moon, PhD, now an assistant professor of energy, environmental and chemical engineering in the School of Engineering & Applied Science at Washington University in St. Louis is the lead author of an article describing the project in the Oct. 7 issue of Nature. Voigt is the senior author.

The tiny circuits constructed from these gene gates and others like them may one day be components of engineered cells that will monitor and respond to their environments.

The number of tasks they could undertake is limited only by evolution and human ingenuity. Janitor bacteria might clean up pollutants, chemical-engineer bacteria pump out biofuels and miniature infection-control bacteria might bustle about killing pathogens.

How to make an AND gate out of genes
The basis of modern computers is the logic gate, a device that makes simple comparisons between the bits, the 1s and 0s, in which computers encode information. Each logic gate has multiple inputs and one output. The output of the gate depends on the inputs and the operation the gate performs.

An AND gate, for example, turns on only if all of its inputs are on. An OR gate turns on if any of its inputs are on.

Suggestively, genes are turned on or off when a transcription factor binds to a region of DNA adjacent to the gene called a promotor.

To make an AND gate out of genes, however, Moon had to find a gene whose activation is controlled by at least two molecules, not one. So only if both molecule 1 AND molecule 2 are present will the gene be turned on and translated into protein.

Such a genetic circuit had been identified in Salmonella typhimurium, the bacterium that causes food poisoning. In this circuit, the transcription factor can bind to the promotor of a gene only if a molecule called a chaperone is present. This meant the genetic circuit could form the basis of a two-input AND gate.

The circuit Moon eventually built consisted of four sensors for four different molecules that fed into three two-input AND gates. If all four molecules were present, all three AND gates turned on and the last one produced a reporter protein that fluoresced red, so that the operation of the circuit could be easily monitored.

In the future, Moon says, a synthetic bacterium with this circuit might sense four different cancer indicators and, in the presence of all four, release a tumor-killing factor.

Crosstalk and timing faults
There are huge differences, of course, between the floppy molecules that embody biological logic gates and the diodes and transistors that embody electronic ones.

Engineers designing biological circuits worry a great deal about crosstalk, or interference. If a circuit is to work properly, the molecules that make up one gate cannot bind to molecules that are part of another gate.

This is much more of a problem in a biological circuit than in an electronic circuit because the interior of a cell is a kind of soup where molecules mingle freely.

To ensure that there wouldn’t be crosstalk among his AND gates, Moon mined parts for his gates from three different strains of bacteria: Shigella flexneri and Pseudomonas aeruginosa, as well as Salmonella.

Although the parts from the three different strains were already quite dissimilar, he made them even more so by subjecting them to error-prone copying cycles and screening the copies for ones that were even less prone to crosstalk (but still functional).

Another problem Moon faced is that biological circuits, unlike electronic ones, don’t have internal clocks that keep the bits moving through the logic gates in lockstep. If signals progress through layers of gates at different speeds, the output of the entire circuit may be wrong, a problem called a timing fault.

Experiments designed to detect such faults in the synthetic circuit showed that they didn’t occur, probably because the chaperones for one layer of logic gates degrades before the transcription factors for the next layer are generated, and this forces a kind of rhythm on the circuit.

Hijacking a bacterium’s controller
“We’re not trying to build a computer out of biological logic gates,” Moon says. “You can’t build a computer this way. Instead we’re trying to make controllers that will allow us to access all the things biological organisms do in simple, programmable ways.”

“I see the cell as a system that consists of a sensor, a controller (the logic circuit), and an actuator,” he says. “This paper covers work on the controller, but eventually the controller’s output will drive an actuator, something that will do work on the cell’s surroundings. “

An synthetic bacterium designed by a friend of Moon’s at Nanyang Technological University in Singapore senses signaling molecules released by the pathogen Pseudomonas aeruginosa. When the molecules reach a high enough concentration, the bacterium generates a toxin and a protein that causes it to burst, releasing the toxin, and killing nearby P. aeruginosa.

“Silicon cannot do that,” Moon says.

Diana Lutz | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>