Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How a Common Fungus Knows When to Attack

25.07.2012
The opportunistic fungal pathogen Candida albicans inconspicuously lives in our bodies until it senses that we are weak, when it quickly adapts to go on the offensive.

The fungus, known for causing yeast and other minor infections, also causes a sometimes-fatal infection known as candidemia in immunocompromised patients. An in vivo study, published in mBio, demonstrates how C. albicans can distinguish between a healthy and an unhealthy host and alter its physiology to attack.

“The ability of the fungus to sense the immune status of its host may be key to its ability to colonize harmlessly in some people but become a deadly pathogen in others,” said Jessica V. Pierce, BA, PhD student in the molecular microbiology program at the Sackler School of Graduate Biomedical Sciences at Tufts.

“Effective detection and treatment of disease in immunocompromised patients could potentially work by targeting the levels of a protein, Efg1p, that we found influenced the growth of Candida albicans inside the host,” she continued.

The researchers knew from previous research that Efg1p influences the expression of genes that regulate how harmful a fungal cell can become. Surprisingly, the investigators found that lower Efg1p levels allow the fungal cells to grow to high levels inside a host. Higher levels of the protein result in less growth.

To examine how the immune status could affect the growth of C. albicans within a host, the researchers fed both healthy and immunocompromised mice equal amounts of two fungal strains containing two different levels of the Efg1p protein.

Fecal pellets from the mice were tested to determine which strain of fungi thrived. In a healthy host, the fungal cells with higher levels of the protein predominated.

In immunocompromised mice, the fungal cells with lower levels of the protein flourished. The researchers noted that lack of interactions with immune cells in the intestinal tract most likely caused the necessary environmental conditions favoring fungal cells that express lower levels of the protein, resulting in fungal overgrowth and setting the stage for systemic infection.

“By having a mixed population with some high Efg1p cells and some low Efg1p cells, the fungus can adjust its physiology to remain benign or become harmful when it colonizes hosts with varying immune statuses. These findings are important because they provide the first steps toward developing more effective methods for detecting and treating serious and stubborn infections caused by Candida albicans, such as candidemia,” said Carol A. Kumamoto, PhD, professor of molecular biology and microbiology at Tufts University School of Medicine and member of the molecular microbiology and genetics program faculties at the Sackler School of Graduate Biomedical Sciences.

The immune system and “good bacteria” within the body act to regulate the size of C. albicans fungal populations in healthy individuals. When the immune system is compromised, the fungus can spread throughout the body. Candidemia, i.e. blood-borne Candida, is the fourth most common blood infection among hospitalized patients in the United States and is found in immunocompromised patients such as babies, those with catheters, and the critically ill.

mBio is an online-only, open access journal published in association with the American Society for Microbiology.

This research was supported in part by grants #AI076156, #AI08179, and #AI07422 from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health.

Pierce JV, Kumamoto CA. mBio. “Variation in Candida albicans EFG1 Expression Enables Host-Dependent Changes in Colonizing Fungal Populations.” July 24, 2012. DOI:10.1128/mBio.00117-12.

About Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, biomedical sciences, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. Tufts University School of Medicine and the Sackler School undertake research that is consistently rated among the highest in the nation for its effect on the advancement of medical science.

If you are a member of the media interested in learning more about this topic, or speaking with a faculty member at the Tufts University School of Medicine or another Tufts health sciences researcher, please contact Jennifer Kritz at 617-636-3707.

Jennifer Kritz | EurekAlert!
Further information:
http://www.tufts.edu/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>