Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Code Beyond DNA

20.09.2011
Modified tRNA bases are characteristic of species

Our genetic code consists of four “letters” in the form of the nucleobases in our DNA and RNA. Three letters together form a “word” that are translated into an amino acid by tRNA and combined into proteins. Special markings subdivide the gene into active and inactive regions.

A third possible level of information has so far received less attention: the chemical modification of tRNA nucleobases. In the journal Angewandte Chemie Thomas Carell and a team at the University of Munich have now demonstrated that tRNA modification profiles can be used for the characterization of species and the differentiation of pathogenic and nonpathogenic bacterial strains.

There are over 100 different modifications that occur in RNA, the exact informational function of which remains unknown. Some are thought to improve the maintenance of reading frames; others may influence the stability of the RNA or participate in “proofreading”. It was recently discovered that the entire collective of modified tRNA nucleosides is a regulative component of the stress response.

In order to learn more about the function of modified nucleobases, the researchers investigated which modifications occur in what numbers in various species. They examined several gram-positive and gram-negative strains of bacteria, various fungi, and different cell components from pigs.

It turns out that the set of modified bases, as a whole, is largely species-specific. Related species have similar profiles, while unrelated ones are clearly different. Says Carell: “We were able to use this data to compute a detailed family tree of the various species that agreed with results from conventional methods. The entire sets of base modifications of a species clearly developed under the pressure of evolutionary selection.”

The researchers compared pairs of pathogenic and nonpathogenic, as well as antibiotic-resistant and non-resistant bacteria. “The bacteria we studied are among the most dangerous clinical pathogens and are responsible for many deaths,” according to Carell. “It was possible to differentiate between the harmless and dangerous species by using the tRNA modification profile.” For the listeria and staphylococci that were analyzed, the pathogenic and resistant species had a significantly higher proportion of some modified bases. “This is an indication that the translation process, that is the translation of the genetic code into proteins, occurs in a significantly different way than in less dangerous strains of these bacteria.”

Author: Thomas Carell, Ludwig-Maximilians-Universität München (Germany), http://www.carellgroup.de
Title: Systems-Based Analysis of Modified tRNA Bases
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201103229

Thomas Carell | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.carellgroup.de

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>