Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Coat for Golden Rods

12.12.2011
Gold isn’t just lovely in jewelry; it has long been used as medicine. Modern medicine is particularly focused on nanoscopic gold, which can be used as a contrast agent and in the treatment of cancer.

In the journal Angewandte Chemie, Eugene R. Zubarev and his team at Rice University in Houston (Texas, USA) have now introduced a new pretreatment process for gold nanorods that could accelerate their use in medical applications.

How can tiny rods of gold help to fight cancer? Cancer cells are more sensitive to temperature than healthy tissue, and this fact can be exploited through local heating of the affected parts of the body. This is where the gold nanorods come into play. They can be introduced into the cancer cells and the diseased areas irradiated with near-infrared light (photoinduced hyperthermia). The rods absorb this light very strongly and transform the light energy into heat, which they transfer to their surroundings.

Gold nanorods are normally produced in a concentrated solution of cetyl trimethylammonium bromide (CTAB) and are thus coated in a double layer of CTAB. The CTAB is only deposited onto the surface, not chemically bound. In an aqueous environment, the CTAB molecules slowly dissolve. This is problematic because CTAB is highly toxic. Simply leaving out the CTAB is no solution because without this coating the nanorods would clump together.

In order to make the rods stable as well as biocompatible, various more or less complex methods of pretreatment have been developed. However, for many of these processes, it is not known how much of the toxic CTAB remains on the nanorods. Another problem is that the pretreatment can disrupt the uptake of the nanorods into cells, which drastically reduces the success of photothermal cancer treatment.

Zubarev and his co-workers have now developed a new strategy that solves these problems: they replaced the CTAB with a variant that contains a sulfur-hydrogen group, abbreviated as MTAB. With various analytical processes, the scientists have been able to prove that the CTAB on these nanorods is completely replaced with an MTAB layer. The MTAB molecules chemically bond to gold nanorods through their sulfur atoms. They bind so tightly that the layer stays in place even in an aqueous solution and the rods can even be freeze-dried. They can be stored indefinitely as a brown powder and dissolve in water again within seconds.

Tests on cell cultures demonstrate that MTAB gold nanorods are not toxic, even at higher concentrations. In addition, they are absorbed in large amounts by tumor cells. The scientists estimate that under the conditions of their experiment, a single cell takes up more than two million nanorods. This would make effective photothermal tumor treatment possible.
About the Author
Dr Eugene Zubarev is an Associate Professor of Chemistry at Rice University, and has been working in the area of nanochemistry and nanomaterials for over 15 years. He is the recipient of the National Science Foundation Career Award and Alfred P. Sloan Research Fellowship.
Author: Eugene R. Zubarev, Rice University, Houston (USA), http://www.owlnet.rice.edu/~zubarev/group.htm
Title: Quantitative Replacement of Cetyl Trimethylammonium Bromide by Cationic Thiol Ligands on the Surface of Gold Nanorods and Their Extremely Large Uptake by Cancer Cells

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201107304

Eugene R. Zubarev | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>