Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A New Coat for Golden Rods

Gold isn’t just lovely in jewelry; it has long been used as medicine. Modern medicine is particularly focused on nanoscopic gold, which can be used as a contrast agent and in the treatment of cancer.

In the journal Angewandte Chemie, Eugene R. Zubarev and his team at Rice University in Houston (Texas, USA) have now introduced a new pretreatment process for gold nanorods that could accelerate their use in medical applications.

How can tiny rods of gold help to fight cancer? Cancer cells are more sensitive to temperature than healthy tissue, and this fact can be exploited through local heating of the affected parts of the body. This is where the gold nanorods come into play. They can be introduced into the cancer cells and the diseased areas irradiated with near-infrared light (photoinduced hyperthermia). The rods absorb this light very strongly and transform the light energy into heat, which they transfer to their surroundings.

Gold nanorods are normally produced in a concentrated solution of cetyl trimethylammonium bromide (CTAB) and are thus coated in a double layer of CTAB. The CTAB is only deposited onto the surface, not chemically bound. In an aqueous environment, the CTAB molecules slowly dissolve. This is problematic because CTAB is highly toxic. Simply leaving out the CTAB is no solution because without this coating the nanorods would clump together.

In order to make the rods stable as well as biocompatible, various more or less complex methods of pretreatment have been developed. However, for many of these processes, it is not known how much of the toxic CTAB remains on the nanorods. Another problem is that the pretreatment can disrupt the uptake of the nanorods into cells, which drastically reduces the success of photothermal cancer treatment.

Zubarev and his co-workers have now developed a new strategy that solves these problems: they replaced the CTAB with a variant that contains a sulfur-hydrogen group, abbreviated as MTAB. With various analytical processes, the scientists have been able to prove that the CTAB on these nanorods is completely replaced with an MTAB layer. The MTAB molecules chemically bond to gold nanorods through their sulfur atoms. They bind so tightly that the layer stays in place even in an aqueous solution and the rods can even be freeze-dried. They can be stored indefinitely as a brown powder and dissolve in water again within seconds.

Tests on cell cultures demonstrate that MTAB gold nanorods are not toxic, even at higher concentrations. In addition, they are absorbed in large amounts by tumor cells. The scientists estimate that under the conditions of their experiment, a single cell takes up more than two million nanorods. This would make effective photothermal tumor treatment possible.
About the Author
Dr Eugene Zubarev is an Associate Professor of Chemistry at Rice University, and has been working in the area of nanochemistry and nanomaterials for over 15 years. He is the recipient of the National Science Foundation Career Award and Alfred P. Sloan Research Fellowship.
Author: Eugene R. Zubarev, Rice University, Houston (USA),
Title: Quantitative Replacement of Cetyl Trimethylammonium Bromide by Cationic Thiol Ligands on the Surface of Gold Nanorods and Their Extremely Large Uptake by Cancer Cells

Angewandte Chemie International Edition, Permalink to the article:

Eugene R. Zubarev | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>