Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A CNIO study tracks the evolutionary history of a cancer-related gene

06.06.2013
The study reveals how a genetic duplication that occurred millions of years ago encouraged the evolution of the ASF1b gene, involved in cancer development

How and when evolution generates diversity or gives form to proteins, living beings' functional building blocks, are essential questions that still surround the theory of evolution. In humans, the majority of genes have emerged via genetic duplication, a strategy in which a gene generates two identical copies that can evolve to generate different proteins.

A study published today by scientists from the Spanish National Cancer Research Centre (CNIO) describes how a genetic duplication that took place in the vertebrate ancestor some 500 million years ago encouraged the evolution of the ASF1b gene; a gene essential for proper cell division and related to some types of cancer such as breast cancer. The results of the study are published in Molecular Biology and Evolution, one of the most prestigious journals in the field of molecular biology and evolution.

The conclusions of the study are the result of collaboration between the team led by Alfonso Valencia, Vice-Director of Basic Research and Director of CNIO's Structural Biology & Biocomputing Programme, and the team led by Genevieve Almouzni, a member of CNIO's Scientific Advisory Committee, at the Institut Curie in Paris, France.

Valencia says that: "When proteins have such a close similarity as the one that exists between the two human copies of the ASF1 gene—ASF1a and ASF1b—it is commonly assumed that they have similar functions in cells; in this case related to fundamental processes such as DNA remodelling and repair, cell division, cell proliferation and genetic transcription or activation".

THE GENOMIC ENVIRONMENT, KEY TO SUCCESS IN SEPARATING FUNCTIONS

Almouzni's team discovered several years ago that, despite the similarity in structure, the two copies of ASF1 were not redundant, but rather had divided up their ancestral functions. How and why, though, did this specialisation happen, and what biological advantages were conferred on the cells?

The authors of the study have used sophisticated ancestral state reconstruction methods in order to track the evolutionary history of ASF1 from its duplication. To this end, they have studied the genome of up to 40 species, some of them as diverse as sea urchins, lampreys, fish, frogs or a wide spectrum of mammals and birds.

Federico Abascal, first author of the study, explains that: "Our results suggest that ASF1b is the original copy that was duplicated millions of years ago. Following the duplication, the other copy moved twice within the genome, settling in very different surroundings to the original". Daniel Rico, one of the study's authors, adds that: "It is precisely this localisation of the two genetic duplicates in such different genomic environments that possibly opened up the door for ASF1b and ASF1a to follow different paths".

According to the researchers, the new genomic context and positive selection are responsible for the subtle differences between the two proteins, which are those that allow them to develop different functions.

"This function separation process put an end to the adaptive conflict in the ancestral gene, which should have simultaneously carried out very different competitive functions that were indispensable for the cells", says Valencia.

The researchers point out that studying the molecular history of genes is fundamental to understanding how they adapt to the functions they develop. In the case of proteins as important as ASF1, this knowledge is crucial for establishing the process of its deregulation in cancer.

Reference article:

Subfunctionalization via adaptive evolution influenced by genomic context: the case of histone chaperones ASF1a and ASF1b. Abascal F, Corpet A, Gurard-Levin ZA, Juan D, Ochsenbein F, Rico D, Valencia A, Almouzni G. Molecular Biology and Evolution (2013). doi: 10.1093/molbev/mst086

Press Office | EurekAlert!
Further information:
http://www.cnio.es

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>