Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A CNIO study tracks the evolutionary history of a cancer-related gene

06.06.2013
The study reveals how a genetic duplication that occurred millions of years ago encouraged the evolution of the ASF1b gene, involved in cancer development

How and when evolution generates diversity or gives form to proteins, living beings' functional building blocks, are essential questions that still surround the theory of evolution. In humans, the majority of genes have emerged via genetic duplication, a strategy in which a gene generates two identical copies that can evolve to generate different proteins.

A study published today by scientists from the Spanish National Cancer Research Centre (CNIO) describes how a genetic duplication that took place in the vertebrate ancestor some 500 million years ago encouraged the evolution of the ASF1b gene; a gene essential for proper cell division and related to some types of cancer such as breast cancer. The results of the study are published in Molecular Biology and Evolution, one of the most prestigious journals in the field of molecular biology and evolution.

The conclusions of the study are the result of collaboration between the team led by Alfonso Valencia, Vice-Director of Basic Research and Director of CNIO's Structural Biology & Biocomputing Programme, and the team led by Genevieve Almouzni, a member of CNIO's Scientific Advisory Committee, at the Institut Curie in Paris, France.

Valencia says that: "When proteins have such a close similarity as the one that exists between the two human copies of the ASF1 gene—ASF1a and ASF1b—it is commonly assumed that they have similar functions in cells; in this case related to fundamental processes such as DNA remodelling and repair, cell division, cell proliferation and genetic transcription or activation".

THE GENOMIC ENVIRONMENT, KEY TO SUCCESS IN SEPARATING FUNCTIONS

Almouzni's team discovered several years ago that, despite the similarity in structure, the two copies of ASF1 were not redundant, but rather had divided up their ancestral functions. How and why, though, did this specialisation happen, and what biological advantages were conferred on the cells?

The authors of the study have used sophisticated ancestral state reconstruction methods in order to track the evolutionary history of ASF1 from its duplication. To this end, they have studied the genome of up to 40 species, some of them as diverse as sea urchins, lampreys, fish, frogs or a wide spectrum of mammals and birds.

Federico Abascal, first author of the study, explains that: "Our results suggest that ASF1b is the original copy that was duplicated millions of years ago. Following the duplication, the other copy moved twice within the genome, settling in very different surroundings to the original". Daniel Rico, one of the study's authors, adds that: "It is precisely this localisation of the two genetic duplicates in such different genomic environments that possibly opened up the door for ASF1b and ASF1a to follow different paths".

According to the researchers, the new genomic context and positive selection are responsible for the subtle differences between the two proteins, which are those that allow them to develop different functions.

"This function separation process put an end to the adaptive conflict in the ancestral gene, which should have simultaneously carried out very different competitive functions that were indispensable for the cells", says Valencia.

The researchers point out that studying the molecular history of genes is fundamental to understanding how they adapt to the functions they develop. In the case of proteins as important as ASF1, this knowledge is crucial for establishing the process of its deregulation in cancer.

Reference article:

Subfunctionalization via adaptive evolution influenced by genomic context: the case of histone chaperones ASF1a and ASF1b. Abascal F, Corpet A, Gurard-Levin ZA, Juan D, Ochsenbein F, Rico D, Valencia A, Almouzni G. Molecular Biology and Evolution (2013). doi: 10.1093/molbev/mst086

Press Office | EurekAlert!
Further information:
http://www.cnio.es

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>