Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Cluster Bomb for Cancer Care

24.08.2010
TAU develops nano-vehicle to deliver chemotherapy treatments on target

Chemotherapy, while an effective cancer treatment, also brings debilitating side effects such as nausea, liver toxicity and a battered immune system.

Now, a new way to deliver this life-saving therapy to cancer patients — getting straight to the source of the disease — has been invented by Dr. Dan Peer of Tel Aviv University's Department of Cell Research and Immunology and the Center for Nano Science and Nano Technology together with Prof. Rimona Margalit of the Department of Biochemistry and Molecular Biology.

Drs. Peer and Margalit have developed a nano-sized vehicle with the ability to deliver chemotherapy drugs directly into cancer cells while avoiding interaction with healthy cells, increasing the efficiency of chemotherapeutic treatment while reducing its side effects.

"The vehicle is very similar to a cluster bomb," explains Dr. Peer. Inside the nano-vehicle itself are tiny particles of chemotherapy drugs. When the delivery vehicle comes into contact with cancer cells, it releases the chemotherapeutic payload directly into the cell. According to Dr. Peer, the nanomedical device can be used to treat many different types of cancer, including lung, blood, colon, breast, ovarian, pancreatic, and even several types of brain cancers.

Their technological breakthrough was recently reported in the journal Biomaterials.

A sweet payload to trick cancer

The key to the drug delivery platform is the molecule used to create the outer coating of this cluster nano-vehicle, a sugar recognized by receptors on many types of cancer cells. "When the nano-vehicle interacts with the receptor on the cancerous cell, the receptor undergoes a structural change and the chemotherapy payload is released directly into the cancer cell," says Dr. Peer, which leads to more focused chemotherapeutic treatment against the diseased cells.

Because the nano-vehicle reacts only to cancer cells, the healthy cells that surround them remain untouched and unaffected by the therapy. The nano-vehicle itself, adds Dr. Peer, is made from organic materials which fully decompose in the body once it has performed its function, making the treatment safer than current therapies.

Clinical trials coming soon

This drug will be an improvement on anything currently on the market, says Dr. Peer. Delivering chemotherapeutics directly into cancerous cells themselves is not only more potent, but also much safer.

Drs. Peer and Margalit are working with ORUUS Pharma in California, which has licensed the "cluster bomb" platform from the university and can ensure a quick transition from the lab to clinical trials, which should begin in two years or less, says Dr. Peer.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>