Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new, clinically validated diagnostic test for detecting BRCA1 and BRCA2 mutations

08.10.2013
Technology as sensitive as standard methodology but more efficient, say researchers in the Journal of Molecular Diagnostics

The recognition of a causal link between mutations in BRCA1 and BRCA2 genes and increased risk of developing breast and ovarian cancer has intensified the demand for genetic testing. Identifying mutations in these large genes by conventional methods can be time consuming and costly.

A report in the November issue of the Journal of Molecular Diagnostics describes a new technique using second-generation sequencing technology that is as sensitive as the standard methodology but has the potential to improve the efficiency and productivity of genetic testing laboratories.

"In our laboratory, approximately 25% of high risk patients who undergo BRCA1 or BRCA2 testing will generate a result with a real or ambiguous relationship to hereditary cancer risk, and so testing for these mutations is an important tool to identify individuals who would benefit from preventative surgery or increased breast cancer surveillance," says lead investigator Aly Karsan, MD, of the Genome Sciences Centre and Department of Pathology of the BC Cancer Agency.

Dr. Karsan, who says his institution currently receives over 500 requests annually for such genetic testing, expects demand to rise and wait times to increase as public awareness broadens, especially following such high-profile patients as Angelina Jolie. Fueling the demand will be identification of additional suspect genes and discovery of genetic factors predictive of response to new therapies. As a result, there is a need for faster and low-cost testing with additional analytic capabilities.

Increased efficiency of the methodology developed offers additional benefits to patients. The investigators envision that more women will be able to be tested, including those without family history of breast or ovarian cancer. Another potential advantage will be that more genomic regions can be analyzed by a single test, allowing simultaneous analysis of other genes that also may be contributing to breast or ovarian cancer susceptibility.

The investigators warn that as more women undergo genetic testing, there is increased likelihood of finding variants of unknown significance or incidental discoveries. They caution that interpretation of these variants can be difficult and time consuming, and procedures should be developed for reporting these results to physicians and patients.

TECHNICAL DETAILS OF THE STUDY

Next-generation sequencing (NGS) refers to technologies that share the ability to parallel sequence millions of DNA templates. The terms second-generation (and third-generation) sequencing are used to describe the evolution of sequencing technology from the first-generation, dideoxy 'Sanger' sequencing. The new DNA sequencing technologies are expected to have a significant impact on the detection, management, and treatment of genetic diseases such as ovarian and breast cancer.

The second-generation sequencing assay described in the current report uses automated small amplicon PCR followed by sample pooling and sequencing with a second-generation instrument. The target region selected was thought to encompass the majority of pathogenic sequence changes in BRCA1 and BRCA2.

The investigators tested the assay using a set of 91 patient genomic DNA samples, 48 selected retrospectively and 43 prospectively. Comparing their results to those obtained by the standard dideoxy sequencing methodology, the researchers found 100% concordance between the two methods, with no false-positive or false-negative predictions. The method generated high-quality sequence coverage across all targeted regions with median coverage greater than 4,000-fold for each pooled sample. After some technical adjustments (such as setting the maximum depth parameter to an arbitrarily high value of 500,000 using SAMtools software and selecting 100,000 as the on-target alignments threshold), the method proved sensitive and specific for detecting variants in genetic sequences.

Eileen Leahy | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>