Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new, clinically validated diagnostic test for detecting BRCA1 and BRCA2 mutations

08.10.2013
Technology as sensitive as standard methodology but more efficient, say researchers in the Journal of Molecular Diagnostics

The recognition of a causal link between mutations in BRCA1 and BRCA2 genes and increased risk of developing breast and ovarian cancer has intensified the demand for genetic testing. Identifying mutations in these large genes by conventional methods can be time consuming and costly.

A report in the November issue of the Journal of Molecular Diagnostics describes a new technique using second-generation sequencing technology that is as sensitive as the standard methodology but has the potential to improve the efficiency and productivity of genetic testing laboratories.

"In our laboratory, approximately 25% of high risk patients who undergo BRCA1 or BRCA2 testing will generate a result with a real or ambiguous relationship to hereditary cancer risk, and so testing for these mutations is an important tool to identify individuals who would benefit from preventative surgery or increased breast cancer surveillance," says lead investigator Aly Karsan, MD, of the Genome Sciences Centre and Department of Pathology of the BC Cancer Agency.

Dr. Karsan, who says his institution currently receives over 500 requests annually for such genetic testing, expects demand to rise and wait times to increase as public awareness broadens, especially following such high-profile patients as Angelina Jolie. Fueling the demand will be identification of additional suspect genes and discovery of genetic factors predictive of response to new therapies. As a result, there is a need for faster and low-cost testing with additional analytic capabilities.

Increased efficiency of the methodology developed offers additional benefits to patients. The investigators envision that more women will be able to be tested, including those without family history of breast or ovarian cancer. Another potential advantage will be that more genomic regions can be analyzed by a single test, allowing simultaneous analysis of other genes that also may be contributing to breast or ovarian cancer susceptibility.

The investigators warn that as more women undergo genetic testing, there is increased likelihood of finding variants of unknown significance or incidental discoveries. They caution that interpretation of these variants can be difficult and time consuming, and procedures should be developed for reporting these results to physicians and patients.

TECHNICAL DETAILS OF THE STUDY

Next-generation sequencing (NGS) refers to technologies that share the ability to parallel sequence millions of DNA templates. The terms second-generation (and third-generation) sequencing are used to describe the evolution of sequencing technology from the first-generation, dideoxy 'Sanger' sequencing. The new DNA sequencing technologies are expected to have a significant impact on the detection, management, and treatment of genetic diseases such as ovarian and breast cancer.

The second-generation sequencing assay described in the current report uses automated small amplicon PCR followed by sample pooling and sequencing with a second-generation instrument. The target region selected was thought to encompass the majority of pathogenic sequence changes in BRCA1 and BRCA2.

The investigators tested the assay using a set of 91 patient genomic DNA samples, 48 selected retrospectively and 43 prospectively. Comparing their results to those obtained by the standard dideoxy sequencing methodology, the researchers found 100% concordance between the two methods, with no false-positive or false-negative predictions. The method generated high-quality sequence coverage across all targeted regions with median coverage greater than 4,000-fold for each pooled sample. After some technical adjustments (such as setting the maximum depth parameter to an arbitrarily high value of 500,000 using SAMtools software and selecting 100,000 as the on-target alignments threshold), the method proved sensitive and specific for detecting variants in genetic sequences.

Eileen Leahy | EurekAlert!
Further information:
http://www.elsevier.com

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>