Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A clear view through trees

29.11.2010
Large tree-like sugar clusters provide potential in vivo probes for cancer cells

Challenges in isolating and synthesizing protein-bound sugar molecules called N-glycans, which help stabilize insulin levels and modulate antibody-dependent immune responses among many other important processes in the body, has limited the investigation of their function and interaction with cultured cells and dissected tissues.

Now, a team led by Yasuyoshi Watanabe and Satoshi Nozaki from the RIKEN Center for Molecular Imaging Science (CMIS), Kobe, has developed the first series of fluorescent and radioactive probes to track these molecules in living animals, which may eventually be used to track tumors¹.

According to Nozaki, N-glycans, which contain sialic acid residues, always form clusters in vivo allowing them to maximize their interactions and selectivity towards N-glycan-binding proteins and other biomolecules. “It is rather rare that a single molecule of N-glycan shows significant biological activity,” he says.

To recreate these in vivo conditions, the researchers worked in close collaboration with Katsunori Tanaka from Osaka University to attach up to 16 sugar molecules to branched lysine oligopeptides, creating the largest tree-like oligosaccharide cluster ever prepared (Fig. 1). After linking the clusters to fluorescent and radioactive labels, they injected the resulting probes into the tail vein of immunodeficient mice.

Positron emission tomography (PET) imaging showed that the number of glycans in the clusters determined their lifetime in vivo. Four- and eight-sugar clusters rapidly disappeared through the kidney in just one hour. Clusters containing 16 N-glycans, however, remained in the body for over four hours before being eliminated through the kidney and the gallbladder—a desirable feature when studying how N-glycans travel in living subjects.

Furthermore, the team discovered that differences in the way the sialic acids are connected to the N-glycans influenced cluster behavior and build up in specific organs. The so-called (2–6)-linked sialic acids stabilized the clusters in serum, leading to their accumulation in the liver through interactions with specific protein receptors. In contrast, their (2–3)-linked congeners rapidly cleared through the bladder. Also, fluorescence imaging revealed that clusters bearing both types of linkages were most fluorescent in the spleen, suggesting their capture by a part of the immune system called the reticuloendothelial system.

The researchers hope to use these clusters as molecular probes for tumors. They are also planning to prepare clusters consisting of three to four different glycans in order to enhance the selectivity of the probes toward tumors and specific organs. “Nobody has done it, but the data shows that we can achieve it,” says Nozaki.

The corresponding author for this highlight is based at the Molecular Probe Dynamics Laboratory, RIKEN Center for Molecular Imaging Science

Journal information

Tanaka, K., Siwu, E.R.O., Minami, K., Hasegawa, K., Nozaki, S., Kanayama, Y., Koyama, K., Chen, W. C., Paulson, J. C., Watanabe, Y. & Fukase, K. Noninvasive imaging of dendrimer-type N-Glycan clusters: in vivo dynamics dependence on oligosaccharide structure. Angewandte Chemie International Edition 49, 8195–8200 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6453
http://www.researchsea.com

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>