Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A class of RNA molecules protects germ cells from damage, Penn vet researchers show

Passing one's genes on to the next generation is a mark of evolutionary success. So it makes sense that the body would work to ensure that the genes the next generation inherits are exact replicas of the originals.

New research by biologists at the University of Pennsylvania School of Veterinary Medicine has now identified one way the body does exactly that. This protective role is fulfilled in part by a class of small RNA molecules called pachytene piwi-interacting RNAs, or piRNAs.

Without them, germ-cell development in males comes to a halt. Because these play such an important role in allowing sperm to develop normally, the research indicates that defects in these molecules or the molecules with which they interact may be responsible for some cases of male infertility.

Jeremy Wang, an associate professor of developmental biology and director of the Center for Animal Transgenesis and Germ Cell Research at Penn Vet, and Ke Zheng, a postdoctoral researcher in Wang's lab, authored the study, which appears in PLOS Genetics.

Scientists know of 8 million different piRNAs in existence; they are the most abundant type of small non-coding RNA. The molecule piRNA gets its name because it forms complexes with piwi proteins. Earlier work had indicated that these piwi-piRNA complexes suppress the activity of transposable elements or "jumping genes," which are stretches of DNA that can change position and cause potentially damaging genetic mutations. These sequences are also known as transposons.

"There are about 50 human diseases caused by transposable elements, so it's important for the body to have a way to try to repress them," Wang said.

This transposon-suppressing activity had been confirmed in a group of piRNAs called pre-pachytene piRNAs, which are expressed before meiosis, the unique process by which germ cells divide. But Zheng and Wang wanted to investigate if a separate group of piRNAs that emerge during meiosis, called pachytene piRNAs, were also required for "silencing" transposons.

Working in male mice, the researchers manipulated an enzyme called MOV10L1, which is known to interact with piwi proteins and is believed to help produce piRNA molecules. They created a mutant mouse in which they could selectively inactivate MOV10L1 at specific stages before, during and after meiosis. The mice that lost the function of MOV10L1 before or at the pachytene stage of meiosis were sterile. When Zheng and Wang examined their germ cells more closely, they found that spermatogenesis had apparently come to a halt at the post-meiotic stage: Early stages of the germ cells were present, but the mice completely lacked mature sperm.

Further experiments allowed Zheng and Wang to pinpoint that MOV10L1 was playing a critical role at the pachytene stage. MOV10L1 mutants lacked pachytene piRNAs, but their levels of pre-pachytene piRNAs were unaffected, as the mutation was "turned on" after they had already been produced.

The researchers also found that, in the MOV10L1 mutants, piwi proteins congregated together along with mitochondria, suggesting that mitochondria may be involved in the generation or organization of pachytene piRNAs. Furthermore, the spermatids, or early-stage sperm, of the mutants had severe DNA damage. While the researchers suspected that the damage may have been caused because of transposons that had been freed from repression in the absence of piRNAs, they actually found that two common transposable elements were not de-repressed in the mutants. They also found a build-up of pachytene piRNA precursors in the testes of the mutants. Their findings raise the possibility that there is another mechanism by which damage occurs.

"It could be the accumulation of precursor molecules is causing some of the damage," Wang said.

This new function for MOV10L1, in playing an essential role in producing pachytene piRNAs, gives researchers a greater understanding of germ-cell development.

"This is the first time we've shown that pachtyene piRNA is required for maintaining genome integrity in the post-meiotic germ cells," Wang said. "It turns out that MOV10L1 is a master regulator of the piRNA pathway and is required for the production of all piRNAs, both pre-pachytene and pachytene."

Any disruptions to this "master regulator" role, therefore, could lead to problems.

"I think we're just beginning to appreciate the significance of this pathway," Wang said. "Mutations at various points in the pathway could lead to infertility."

This research was supported by the National Institutes of Health's National Institute of Child Health and Human Development.

Katherine Unger Baillie | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>