Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A class of RNA molecules protects germ cells from damage, Penn vet researchers show

16.11.2012
Passing one's genes on to the next generation is a mark of evolutionary success. So it makes sense that the body would work to ensure that the genes the next generation inherits are exact replicas of the originals.

New research by biologists at the University of Pennsylvania School of Veterinary Medicine has now identified one way the body does exactly that. This protective role is fulfilled in part by a class of small RNA molecules called pachytene piwi-interacting RNAs, or piRNAs.

Without them, germ-cell development in males comes to a halt. Because these play such an important role in allowing sperm to develop normally, the research indicates that defects in these molecules or the molecules with which they interact may be responsible for some cases of male infertility.

Jeremy Wang, an associate professor of developmental biology and director of the Center for Animal Transgenesis and Germ Cell Research at Penn Vet, and Ke Zheng, a postdoctoral researcher in Wang's lab, authored the study, which appears in PLOS Genetics.

Scientists know of 8 million different piRNAs in existence; they are the most abundant type of small non-coding RNA. The molecule piRNA gets its name because it forms complexes with piwi proteins. Earlier work had indicated that these piwi-piRNA complexes suppress the activity of transposable elements or "jumping genes," which are stretches of DNA that can change position and cause potentially damaging genetic mutations. These sequences are also known as transposons.

"There are about 50 human diseases caused by transposable elements, so it's important for the body to have a way to try to repress them," Wang said.

This transposon-suppressing activity had been confirmed in a group of piRNAs called pre-pachytene piRNAs, which are expressed before meiosis, the unique process by which germ cells divide. But Zheng and Wang wanted to investigate if a separate group of piRNAs that emerge during meiosis, called pachytene piRNAs, were also required for "silencing" transposons.

Working in male mice, the researchers manipulated an enzyme called MOV10L1, which is known to interact with piwi proteins and is believed to help produce piRNA molecules. They created a mutant mouse in which they could selectively inactivate MOV10L1 at specific stages before, during and after meiosis. The mice that lost the function of MOV10L1 before or at the pachytene stage of meiosis were sterile. When Zheng and Wang examined their germ cells more closely, they found that spermatogenesis had apparently come to a halt at the post-meiotic stage: Early stages of the germ cells were present, but the mice completely lacked mature sperm.

Further experiments allowed Zheng and Wang to pinpoint that MOV10L1 was playing a critical role at the pachytene stage. MOV10L1 mutants lacked pachytene piRNAs, but their levels of pre-pachytene piRNAs were unaffected, as the mutation was "turned on" after they had already been produced.

The researchers also found that, in the MOV10L1 mutants, piwi proteins congregated together along with mitochondria, suggesting that mitochondria may be involved in the generation or organization of pachytene piRNAs. Furthermore, the spermatids, or early-stage sperm, of the mutants had severe DNA damage. While the researchers suspected that the damage may have been caused because of transposons that had been freed from repression in the absence of piRNAs, they actually found that two common transposable elements were not de-repressed in the mutants. They also found a build-up of pachytene piRNA precursors in the testes of the mutants. Their findings raise the possibility that there is another mechanism by which damage occurs.

"It could be the accumulation of precursor molecules is causing some of the damage," Wang said.

This new function for MOV10L1, in playing an essential role in producing pachytene piRNAs, gives researchers a greater understanding of germ-cell development.

"This is the first time we've shown that pachtyene piRNA is required for maintaining genome integrity in the post-meiotic germ cells," Wang said. "It turns out that MOV10L1 is a master regulator of the piRNA pathway and is required for the production of all piRNAs, both pre-pachytene and pachytene."

Any disruptions to this "master regulator" role, therefore, could lead to problems.

"I think we're just beginning to appreciate the significance of this pathway," Wang said. "Mutations at various points in the pathway could lead to infertility."

This research was supported by the National Institutes of Health's National Institute of Child Health and Human Development.

Katherine Unger Baillie | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>