Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Clamp for Emerging Flu Viruses

29.04.2010
Researchers in Freiburg and Berlin Unravel Secret of Innate Immune Response

When the human body becomes infected with new influenza viruses, the immune system rapidly activates an inborn protective mechanism to inhibit the intruding pathogen. A protein known as Mx plays an important role in this process, keeping the spread of viruses in check.

Exactly how Mx accomplishes this task was previously unknown. Now virologists from the Institute of Medical Microbiology at the Freiburg University Medical Center and structural biologists from the Max Delbrück Center for Molecular Medicine (MDC) in Berlin-Buch, Germany, have unraveled the structure of the Mx protein and are able to explain how it develops its anti-viral effect (Nature, doi: 10.1038/nature08972)*.

New influenza viruses jump from animals to humans with alarming frequency, as evidenced by the H5N1 bird flu virus or, more recently, with the swine flu virus. Although humans usually do not have any preexisting immunity to such pathogens, they are not completely unprotected against the invaders. The human body can rapidly mobilize a defense strategy which prevents the influenza viruses from proliferating unchecked in the body.

An essential element of this protection is a protein, known as Mx (short for myxovirus resistance), produced by the body which recognizes many viruses and prevents them from replicating inside infected cells. Under normal conditions this protective protein is not present in the cell at all, but after infection it can be produced in large quantities. The order to produce this protein Mx is made by the signaling protein interferon, which is excreted by infected cells and alarms the organism of the virus infection.

Mx is a molecular machine which does not develop its full power until the individual molecules have joined to form a ring-structured macromolecular network. A central element of the formation of these ring structures is the special part of Mx known as the stalk.

Scientists have attempted to describe the structure of this stalk for years. The virologists Otto Haller, Alexander von der Malsburg, and Georg Kochs in Freiburg and the structural biologists Oliver Daumke, Song Gao, Susann Paeschke, and Joachim Behlke from MDC in Berlin-Buch have now unraveled the secret of the stalk structure of Mx at the atomic level. This structure explains the composition of Mx and allows scientists to conduct tests to make predictions concerning the mode of action of the antiviral molecule.

In combination with findings from earlier biochemical studies, the results of this study make it clear that the stalk structure of Mx functions as a kind of clamp which restrains and deactivates important components of the influenza virus in the infected cell. The fact that new forms of flu can lead to epidemics or even pandemics in spite of this defense mechanism is due to the power and aggressiveness of these pathogens.

The researchers are confident that their new findings about the protective Mx protein will form the basis for the development of new antiviral drugs for combating dangerous influenza viruses. Moreover, they are also certain that this new knowledge about the function of Mx will increase their understanding of other members of this family of proteins.

*Structural basis of oligomerisaton in the stalk region of dynamin-like MxA

Song Gao1,2, Alexander von der Malsburg3, Susann Paeschke1, Joachim Behlke1, Otto Haller3, Georg Kochs3, Oliver Daumke1

1Max Delbrück Center for Molecular Medicine, Crystallography, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
2Institute for Chemistry and Biochemistry, Free University Berlin, Takustrasse 3, 14195 Berlin, Germany

3Department of Virology, Institute of Medical Microbiology and Hygiene, University of Freiburg, Hermann-Herderstrasse 11, 79104 Freiburg, Germany

Contact:

Dr. Oliver Daumke
Max Delbrück Center for
Molecular Medicine (MDC) Berlin-Buch
Robert-Rössle-Strasse 10
13125 Berlin
Phone: +49-30-94 06-34 25
Fax: +4930-94 06-38 14
e-mail: oliver.daumke@mdc-berlin.de
Prof. Dr. Otto Haller
Freiburg University Medical Center
Institute of Medical Microbiology
and Hygiene; Department of Virology
Hermann-Herder-Str. 11
79104 Freiburg
Phone: +49 761 203 65 34
Fax: +49 761 203 66 26
e-mail: otto.haller@uniklinik-freiburg.de

Barbara Bachtler | Max-Delbrück-Centrum
Further information:
http://www.virologie-freiburg.de
http://www.mdc-berlin.de/daumke

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>