A childhood dilemma: Growth or Play

Wild Assamese macaque infants inspecting a knee at the Phu Khieo Wildlife Sanctuary in northeastern Thailand. Photo: Andreas Berghänel

Frolicking, wrestling, climbing, jumping – Playing is a lot of fun and promotes development but is also very strenuous. Behavioral biologists therefore suspect that animals only play intensively if they have surplus energy at their disposal or if playing brings about vital advantages.

Scientists led by Julia Ostner from the University of Göttingen and the German Primate Center – Leibniz Institute for Primate Research investigated this in young Assamese macaques in their natural habitat in Thailand. They found that those animals that play a lot grow more slowly than their less active conspecifics. However, during play they learn motoric skills that are vital for fight and flight. Thus, it depends on the respective conditions whether faster growth or more play is the right choice (Science Advances, 2015).

Active play promotes motoric development but at the same time it uses a lot of energy, which is required for an unimpeded growth process. Evolutionary biologists examining play behavior in animals are faced with a Darwinian paradox: Most definitions of play behavior include that the behavior does not serve any immediate purpose and is not assignable to an obvious function.

Any behavior that generates costs but no benefits should disappear through natural selection. The prevalence of play behavior in the animal kingdom was therefore explained by the notion that it produces indirect or long-term benefits but occurs only when the animals have sufficient energy available: Playing promotes the motoric, cognitive and social development and only takes place when the animals are healthy, well fed and safe. “Our findings on Assamese macaques contradict this notion”, says Andreas Berghänel, first author of the published study.

Young Assamese macaques, who spend a lot of time wrestling and romping in the jungles of Thailand, grow more slowly than their less playful conspecifics. “Thus, unconstrained development does not appear to be more important than play, young monkeys overexert themselves so much by playing that they cannot keep up with the growth process,” says Julia Ostner, head of the study.

The more playful monkeys thereby risk maturing later and having fewer offspring. However, there is also a clear benefit: The more time an infant spent playing intensely before acquiring a new motoric skill, the earlier in life it masters this motoric task. A faster motoric development is very beneficial if one is involved in fights or must flee from enemies. “Thus, my recommendation to parents: send your kids out to play and feed them a good dinner afterwards to make them grow tall and smart”, says Julia Ostner.

Since 2014 Julia Ostner is Professor and Head of Department at the Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology at the University of Göttingen. In addition, she heads the Research Group Social Evolution in Primates at the German Primate Center – Leibniz Institute for Primate Research since 2015. Julia Ostner studies the behavior of Assamese macaques at a research station in Phu Khieo Wildlife Sanctuary in Thailand. Since 2014, the research station is financed by the German Primate Center.

Original Publication

Andreas Berghänel, Oliver Schülke, Julia Ostner (2015): Locomotor play drives motor skill acquisition at the expense of growth: a life history trade-off. Science Advances. http://advances.sciencemag.org/content/1/7/e1500451

Contact

Prof. Dr. Julia Ostner
Behavioral Ecology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology at the University of Göttingen and Research Group Social Evolution in Primates, German Primate Center
Phone: +49 551 39-33925
Email: jostner@gwdg.de

Dr. Sylvia Siersleben (PR)
Phone: +49 551 3851-163
Email: ssiersleben@dpz.eu

Printable pictures and videos are available in our media database. We kindly request a specimen copy in case of publication.

The German Primate Center (DPZ) – Leibniz Institute for Primate Research conducts biological and biomedical research on and with primates in the fields of infection research, neuroscience and primate biology. The DPZ maintains three field stations in the tropics and is the reference and service center for all aspects of primate research. The DPZ is one of 89 research and infrastructure facilities of the Leibniz Association.

http://www.dpz.eu/de/startseite.html – Website of the German Primate Center
http://medien.dpz.eu/webgate/keyword.html?currentContainerId=2861 – Media database
http://www.dpz.eu/en/unit/social-evolution-in-primates/about-us.html – Research group Social Evolution in Primates
http://www.uni-goettingen.de/en/153624.html – Department of Behavioral Ecology, University of Göttingen

Media Contact

Dr. Susanne Diederich idw - Informationsdienst Wissenschaft

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors