Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A challenge to improve Nuclear Magnetic Resonance for structural biology

In structural biology, the only technique available to predict the three dimensional structure of large complex molecules in solution, such as proteins and DNA, is NMR spectroscopy. To catalyze improvements in the techniques behind these predictions, the “eNMR” project has launched a new initiative.

In September’s Nature Methods the project issued an invitation to the entire biomolecular Nuclear Magnetic Resonance community to participate in a large scale test of modern computing algorithms. This community-wide “contest” will potentially improve efficiency, reproducibility and reliability of NMR structure determination. eNMR will be using the Enabling Grids for E-sciencE infrastructure to power their analysis.

NMR spectroscopy is important in many different areas of science and is often used to determine the structure of complex molecules. The technique is particularly useful in biological sciences as it can predict the three dimensional structure of macromolecules in solution, including substances such as proteins and DNA that are key to understanding how the human body works. The analysis, however, is labour intensive and automation would accelerate the pace of research, helping scientists to identify molecules more quickly.

“Insight into the shape of biomolecules is the starting point for designing new drugs,” says Alexandre Bonvin, member of the eNMR project and one of the authors of the paper. “If we can improve this technology, it will help researchers in structural biology to be more productive. This could help shorten the whole process of designing new drugs.”

The small molecule ABT-737, for example, was found by screening a chemical library with NMR-based techniques. The discovery of ABT-737 was covered in the 2005 Nature paper “An inhibitor of Bcl-2 family proteins induces regression of solid tumours,” as a promising cancer fighting compound. (Though it has not, as of yet, been marketed.)

The eNMR project has worked to improve computational methods used for automation since late 2007, using EGEE’s computational resources to calculate molecular structures from NMR data. Their next step is to involve all interested stakeholders in their efforts. Through this challenge – called “Critical Assessment of automated Structure Determination of proteins by NMR” or CASD-NMR – the team invites laboratory researchers to submit molecules (technically the spatial coordinates of the atoms in the molecule with their associated NMR data) to help improve the algorithms used by the global eNMR team.

The CASD-NMR challenge will help computer scientists to automate NMR calculations and test them against blind datasets. The eNMR project and the National Institute of Health’s (NIH) Protein Structure Initiative are providing data for this challenge, and the CASD-NMR team hopes that other researchers will provide additional data sets.

In the future, automation in NMR will allow ‘unsupervised’ results to be accepted by the community as being correct and viable, ready for inclusion in the Protein Data Bank (PDB) straight away. The PDB is a database that stores macromolecular structural data that is freely and publicly available for further research (

“At this time fully automated methods are not reliable enough to be used blindly; this CASD-NMR experiment will be a valuable tool to see where we stand in automation and improve our methods,” says Bonvin.

CASD-NMR is set up to give the various teams eight weeks to apply automated methods to generate structures at a level of quality comparable to that of structures deposited into the PDB. National Grid Initiatives BigGrid in the Netherlands and IGI/INFN have contributed CPUs to the project so far. An assessment meeting is planned for mid-2010 to look at the results. Data are made available for CASD-NMR participants through the e-NMR project’s webpage (

The paper's details:
CASD-NMR: critical assessment of automated structure determination by NMR Nature Methods Vol.6 No.9 September 2009 625


Notes for Editors

About e-NMR: The main objective of the e-NMR project is to optimise and extend the use of the NMR Research Infrastructures of EU-NMR through the implementation of an e-Infrastructure. The project aims to provide the European biomolecular NMR user community with a platform integrating and streamlining the computational approaches necessary for biomolecular NMR data analysis (e-NMR).

The e-NMR infrastructure is based on the EGEE grid infrastructure and is funded under the 7th framework programme of the European Union (Contract no. 213010 - e-NMR). NMR plays an important role in life sciences (biomolecular NMR), and structural biology in particular, at both European and international levels.

The project will also seeks to:

* establish a human collaboration network between the biomolecular NMR and the e-Infrastructure scientific communities
* assess the state-of-the-art of the computational aspects of biomolecular NMR

* implement and make available state-of-the-art computational methods.

About EGEE:
The Enabling Grids for E-sciencE (EGEE) project is co-funded by the European Commission. The project aims to provide researchers, in both academia and industry, with access to major computing resources, independent of their geographic locations.
EGEE's main aims are:
1. To build a secure, reliable and robust grid infrastructure 2. To supply a computing service for many scientific disciplines 3. To attract, engage and support a wide range of users from science and industry, and provide them with extensive technical and training support.

Press contact: Neasan O’Neil, EGEE Press and Events Manager, +44 (0)79 6281 8712,

Catherine Gater | CERN
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>