Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A challenge to improve Nuclear Magnetic Resonance for structural biology

30.11.2009
In structural biology, the only technique available to predict the three dimensional structure of large complex molecules in solution, such as proteins and DNA, is NMR spectroscopy. To catalyze improvements in the techniques behind these predictions, the “eNMR” project has launched a new initiative.

In September’s Nature Methods the project issued an invitation to the entire biomolecular Nuclear Magnetic Resonance community to participate in a large scale test of modern computing algorithms. This community-wide “contest” will potentially improve efficiency, reproducibility and reliability of NMR structure determination. eNMR will be using the Enabling Grids for E-sciencE infrastructure to power their analysis.

NMR spectroscopy is important in many different areas of science and is often used to determine the structure of complex molecules. The technique is particularly useful in biological sciences as it can predict the three dimensional structure of macromolecules in solution, including substances such as proteins and DNA that are key to understanding how the human body works. The analysis, however, is labour intensive and automation would accelerate the pace of research, helping scientists to identify molecules more quickly.

“Insight into the shape of biomolecules is the starting point for designing new drugs,” says Alexandre Bonvin, member of the eNMR project and one of the authors of the paper. “If we can improve this technology, it will help researchers in structural biology to be more productive. This could help shorten the whole process of designing new drugs.”

The small molecule ABT-737, for example, was found by screening a chemical library with NMR-based techniques. The discovery of ABT-737 was covered in the 2005 Nature paper “An inhibitor of Bcl-2 family proteins induces regression of solid tumours,” as a promising cancer fighting compound. (Though it has not, as of yet, been marketed.)

The eNMR project has worked to improve computational methods used for automation since late 2007, using EGEE’s computational resources to calculate molecular structures from NMR data. Their next step is to involve all interested stakeholders in their efforts. Through this challenge – called “Critical Assessment of automated Structure Determination of proteins by NMR” or CASD-NMR – the team invites laboratory researchers to submit molecules (technically the spatial coordinates of the atoms in the molecule with their associated NMR data) to help improve the algorithms used by the global eNMR team.

The CASD-NMR challenge will help computer scientists to automate NMR calculations and test them against blind datasets. The eNMR project and the National Institute of Health’s (NIH) Protein Structure Initiative are providing data for this challenge, and the CASD-NMR team hopes that other researchers will provide additional data sets.

In the future, automation in NMR will allow ‘unsupervised’ results to be accepted by the community as being correct and viable, ready for inclusion in the Protein Data Bank (PDB) straight away. The PDB is a database that stores macromolecular structural data that is freely and publicly available for further research (www.wwpdb.org).

“At this time fully automated methods are not reliable enough to be used blindly; this CASD-NMR experiment will be a valuable tool to see where we stand in automation and improve our methods,” says Bonvin.

CASD-NMR is set up to give the various teams eight weeks to apply automated methods to generate structures at a level of quality comparable to that of structures deposited into the PDB. National Grid Initiatives BigGrid in the Netherlands and IGI/INFN have contributed CPUs to the project so far. An assessment meeting is planned for mid-2010 to look at the results. Data are made available for CASD-NMR participants through the e-NMR project’s webpage (http://www.e-nmr.eu/CASD-NMR).

The paper's details:
CASD-NMR: critical assessment of automated structure determination by NMR Nature Methods Vol.6 No.9 September 2009 625

doi:10.1038/nmeth0909-625

Notes for Editors

About e-NMR: The main objective of the e-NMR project is to optimise and extend the use of the NMR Research Infrastructures of EU-NMR through the implementation of an e-Infrastructure. The project aims to provide the European biomolecular NMR user community with a platform integrating and streamlining the computational approaches necessary for biomolecular NMR data analysis (e-NMR).

The e-NMR infrastructure is based on the EGEE grid infrastructure and is funded under the 7th framework programme of the European Union (Contract no. 213010 - e-NMR). NMR plays an important role in life sciences (biomolecular NMR), and structural biology in particular, at both European and international levels.

The project will also seeks to:

* establish a human collaboration network between the biomolecular NMR and the e-Infrastructure scientific communities
* assess the state-of-the-art of the computational aspects of biomolecular NMR

* implement and make available state-of-the-art computational methods.

About EGEE:
The Enabling Grids for E-sciencE (EGEE) project is co-funded by the European Commission. The project aims to provide researchers, in both academia and industry, with access to major computing resources, independent of their geographic locations.
EGEE's main aims are:
1. To build a secure, reliable and robust grid infrastructure 2. To supply a computing service for many scientific disciplines 3. To attract, engage and support a wide range of users from science and industry, and provide them with extensive technical and training support.

Press contact: Neasan O’Neil, EGEE Press and Events Manager, +44 (0)79 6281 8712, n.oneill@qmul.ac.uk.

Catherine Gater | CERN
Further information:
http://www.eu-egee.org
http://www.enmr.eu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>