Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A challenge to improve Nuclear Magnetic Resonance for structural biology

30.11.2009
In structural biology, the only technique available to predict the three dimensional structure of large complex molecules in solution, such as proteins and DNA, is NMR spectroscopy. To catalyze improvements in the techniques behind these predictions, the “eNMR” project has launched a new initiative.

In September’s Nature Methods the project issued an invitation to the entire biomolecular Nuclear Magnetic Resonance community to participate in a large scale test of modern computing algorithms. This community-wide “contest” will potentially improve efficiency, reproducibility and reliability of NMR structure determination. eNMR will be using the Enabling Grids for E-sciencE infrastructure to power their analysis.

NMR spectroscopy is important in many different areas of science and is often used to determine the structure of complex molecules. The technique is particularly useful in biological sciences as it can predict the three dimensional structure of macromolecules in solution, including substances such as proteins and DNA that are key to understanding how the human body works. The analysis, however, is labour intensive and automation would accelerate the pace of research, helping scientists to identify molecules more quickly.

“Insight into the shape of biomolecules is the starting point for designing new drugs,” says Alexandre Bonvin, member of the eNMR project and one of the authors of the paper. “If we can improve this technology, it will help researchers in structural biology to be more productive. This could help shorten the whole process of designing new drugs.”

The small molecule ABT-737, for example, was found by screening a chemical library with NMR-based techniques. The discovery of ABT-737 was covered in the 2005 Nature paper “An inhibitor of Bcl-2 family proteins induces regression of solid tumours,” as a promising cancer fighting compound. (Though it has not, as of yet, been marketed.)

The eNMR project has worked to improve computational methods used for automation since late 2007, using EGEE’s computational resources to calculate molecular structures from NMR data. Their next step is to involve all interested stakeholders in their efforts. Through this challenge – called “Critical Assessment of automated Structure Determination of proteins by NMR” or CASD-NMR – the team invites laboratory researchers to submit molecules (technically the spatial coordinates of the atoms in the molecule with their associated NMR data) to help improve the algorithms used by the global eNMR team.

The CASD-NMR challenge will help computer scientists to automate NMR calculations and test them against blind datasets. The eNMR project and the National Institute of Health’s (NIH) Protein Structure Initiative are providing data for this challenge, and the CASD-NMR team hopes that other researchers will provide additional data sets.

In the future, automation in NMR will allow ‘unsupervised’ results to be accepted by the community as being correct and viable, ready for inclusion in the Protein Data Bank (PDB) straight away. The PDB is a database that stores macromolecular structural data that is freely and publicly available for further research (www.wwpdb.org).

“At this time fully automated methods are not reliable enough to be used blindly; this CASD-NMR experiment will be a valuable tool to see where we stand in automation and improve our methods,” says Bonvin.

CASD-NMR is set up to give the various teams eight weeks to apply automated methods to generate structures at a level of quality comparable to that of structures deposited into the PDB. National Grid Initiatives BigGrid in the Netherlands and IGI/INFN have contributed CPUs to the project so far. An assessment meeting is planned for mid-2010 to look at the results. Data are made available for CASD-NMR participants through the e-NMR project’s webpage (http://www.e-nmr.eu/CASD-NMR).

The paper's details:
CASD-NMR: critical assessment of automated structure determination by NMR Nature Methods Vol.6 No.9 September 2009 625

doi:10.1038/nmeth0909-625

Notes for Editors

About e-NMR: The main objective of the e-NMR project is to optimise and extend the use of the NMR Research Infrastructures of EU-NMR through the implementation of an e-Infrastructure. The project aims to provide the European biomolecular NMR user community with a platform integrating and streamlining the computational approaches necessary for biomolecular NMR data analysis (e-NMR).

The e-NMR infrastructure is based on the EGEE grid infrastructure and is funded under the 7th framework programme of the European Union (Contract no. 213010 - e-NMR). NMR plays an important role in life sciences (biomolecular NMR), and structural biology in particular, at both European and international levels.

The project will also seeks to:

* establish a human collaboration network between the biomolecular NMR and the e-Infrastructure scientific communities
* assess the state-of-the-art of the computational aspects of biomolecular NMR

* implement and make available state-of-the-art computational methods.

About EGEE:
The Enabling Grids for E-sciencE (EGEE) project is co-funded by the European Commission. The project aims to provide researchers, in both academia and industry, with access to major computing resources, independent of their geographic locations.
EGEE's main aims are:
1. To build a secure, reliable and robust grid infrastructure 2. To supply a computing service for many scientific disciplines 3. To attract, engage and support a wide range of users from science and industry, and provide them with extensive technical and training support.

Press contact: Neasan O’Neil, EGEE Press and Events Manager, +44 (0)79 6281 8712, n.oneill@qmul.ac.uk.

Catherine Gater | CERN
Further information:
http://www.eu-egee.org
http://www.enmr.eu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>