Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cellular task force to safeguard genome stability

18.12.2008
The maintenance of genome stability is crucial for protecting an organism against the onset of cancer and the study of the mechanisms controlling genome stability represents one of the most promising frontiers in cancer research.

A recent study, published in Nature, now sheds light on a complex regulatory system based on sumoylation and ubiquitination, two important regulatory processes involved in DNA repair and, consequently, the maintenance of genome stability.

The study was conducted by an international team of researchers led by Dana Branzei, Head of the DNA Repair Program at the IFOM Foundation (FIRC Institute of Molecular Oncology) in Milan.

DNA repair occurs during the cell cycle, when cells replicate and divide into 2 daughter cells, thus ensuring the correct functioning and survival of the organism.

In order for the genetic material to be correctly transmitted to the daughter cells, the genome must be faithfully duplicated, through a process known as DNA replication. During DNA replication, the DNA sequences that make up the two complementary DNA strands are copied.

However, it is not unusual that during this replication process DNA lesions occur in one the two DNA strands, caused by the metabolism of the cell itself or by external chemical or physical factors such as ultraviolet radiation. Usually, these lesions are immediately repaired because cells are equipped with extraordinary safeguard systems that protect the genome. Indeed, if a portion of the DNA sequence in one of the two strands is omitted or incorrectly copied during replication, the cell can repair the mistake through a process known as “homologous recombination”.

This process allows the damaged DNA strand to deviate the replication machinery to the healthy complementary strand, from which the missing genetic information can be extracted. Once the damaged portion has been bypassed, the original replication course is resumed and all signs of the deviation are “eliminated”. In this way, replication continues along the initial DNA strands, thus ensuring normal cell cycle progression.

The repair system is extremely quick and efficient, but if it goes wrong or if it is not correctly controlled, the repair defect becomes irreversible and may lead to an accumulation of chromosomal alterations. The final outcome is that the stability of the entire genome is jeopardized, predisposing the organism to cancer or rare genetic syndromes, such as the one of Bloom’s Syndrome, which is characterized by a high risk of developing cancer, notable in early life.

This recombination process is finely regulated and coordinated by sumoylation and ubiquitination: “it was already known that sumoylation and ubiquitination play a role in DNA repair” explained Dana Branzei “however, it was not clear whether, and if so, how, these processes are coordinated in their regulation of enzymes involved in DNA repair”.

The study conducted by Dana Branzei takes advantage of a sophisticated experimental approach that allows DNA replication and repair processes to be directly visualized. Using this approach, Branzei and colleagues have discovered that sumoylation and ubiquitination work together in a tight collaboration; the two processes compete with each other to coordinate and control homologous recombination by activating enzymes in charge of DNA repair and guaranteeing that this process occurs correctly. “By directly visualizing the recombination process we were able to observe how the two distinct molecular mechanisms (sumoylation and ubiquitination) are perfectly coordinated in their control of DNA repair.” continues Branzei “it is as if they were acting as an emergency task force, whose mission is to safeguard the stability of the genome. Task force members are provided with precise guidelines, based on their specific roles, and their actions are coordinated according to the exact operating modes.”

For cancer research, this discovery represents a significant advancement of knowledge and offers promising prospects for the identification of novel therapeutic targets for cancer treatment. In particular, the characterization of the enzymes regulated by the DNA repair “task force” may lead to the development of anti-cancer therapies that specifically target tumour cells, without damaging the genomes of healthy cells.

Elena Bauer | alfa
Further information:
http://www.ifom-ieo-campus.it

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>