Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cellular task force to safeguard genome stability

18.12.2008
The maintenance of genome stability is crucial for protecting an organism against the onset of cancer and the study of the mechanisms controlling genome stability represents one of the most promising frontiers in cancer research.

A recent study, published in Nature, now sheds light on a complex regulatory system based on sumoylation and ubiquitination, two important regulatory processes involved in DNA repair and, consequently, the maintenance of genome stability.

The study was conducted by an international team of researchers led by Dana Branzei, Head of the DNA Repair Program at the IFOM Foundation (FIRC Institute of Molecular Oncology) in Milan.

DNA repair occurs during the cell cycle, when cells replicate and divide into 2 daughter cells, thus ensuring the correct functioning and survival of the organism.

In order for the genetic material to be correctly transmitted to the daughter cells, the genome must be faithfully duplicated, through a process known as DNA replication. During DNA replication, the DNA sequences that make up the two complementary DNA strands are copied.

However, it is not unusual that during this replication process DNA lesions occur in one the two DNA strands, caused by the metabolism of the cell itself or by external chemical or physical factors such as ultraviolet radiation. Usually, these lesions are immediately repaired because cells are equipped with extraordinary safeguard systems that protect the genome. Indeed, if a portion of the DNA sequence in one of the two strands is omitted or incorrectly copied during replication, the cell can repair the mistake through a process known as “homologous recombination”.

This process allows the damaged DNA strand to deviate the replication machinery to the healthy complementary strand, from which the missing genetic information can be extracted. Once the damaged portion has been bypassed, the original replication course is resumed and all signs of the deviation are “eliminated”. In this way, replication continues along the initial DNA strands, thus ensuring normal cell cycle progression.

The repair system is extremely quick and efficient, but if it goes wrong or if it is not correctly controlled, the repair defect becomes irreversible and may lead to an accumulation of chromosomal alterations. The final outcome is that the stability of the entire genome is jeopardized, predisposing the organism to cancer or rare genetic syndromes, such as the one of Bloom’s Syndrome, which is characterized by a high risk of developing cancer, notable in early life.

This recombination process is finely regulated and coordinated by sumoylation and ubiquitination: “it was already known that sumoylation and ubiquitination play a role in DNA repair” explained Dana Branzei “however, it was not clear whether, and if so, how, these processes are coordinated in their regulation of enzymes involved in DNA repair”.

The study conducted by Dana Branzei takes advantage of a sophisticated experimental approach that allows DNA replication and repair processes to be directly visualized. Using this approach, Branzei and colleagues have discovered that sumoylation and ubiquitination work together in a tight collaboration; the two processes compete with each other to coordinate and control homologous recombination by activating enzymes in charge of DNA repair and guaranteeing that this process occurs correctly. “By directly visualizing the recombination process we were able to observe how the two distinct molecular mechanisms (sumoylation and ubiquitination) are perfectly coordinated in their control of DNA repair.” continues Branzei “it is as if they were acting as an emergency task force, whose mission is to safeguard the stability of the genome. Task force members are provided with precise guidelines, based on their specific roles, and their actions are coordinated according to the exact operating modes.”

For cancer research, this discovery represents a significant advancement of knowledge and offers promising prospects for the identification of novel therapeutic targets for cancer treatment. In particular, the characterization of the enzymes regulated by the DNA repair “task force” may lead to the development of anti-cancer therapies that specifically target tumour cells, without damaging the genomes of healthy cells.

Elena Bauer | alfa
Further information:
http://www.ifom-ieo-campus.it

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>