Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Cell’s ‘Cap’ of Bundled Fibers Could Yield Clues to Disease

04.12.2009
It turns out that wearing a cap is good for you, at least if you are a mammal cell.

Researchers from the Johns Hopkins Engineering in Oncology Center have shown that in healthy cells, a bundled “cap” of thread-like fibers holds the cell’s nucleus, its genetic storehouse, in its proper place.

Understanding this cap’s influence on cell and nuclear shape, the researchers say, could provide clues to the diagnosis and treatment of diseases such as cancer, muscular dystrophy and the age-accelerating condition known as progeria.

“Under a microscope, the nucleus of a sick cell appears to bulge toward the top, while the nucleus of a healthy cell appears as a flattened disk that clings to the base,” said principal investigator Denis Wirtz, professor of chemical and biomolecular engineering and director of the Engineering in Oncology Center. “If we can figure out how and why this shape-changing occurs, we may learn how to detect, treat or perhaps even prevent some serious medical disorders.”

Scientists have known that misshapen nuclei are an indicator of disease, Wirtz said, but they were not certain how a cell controlled the shape of its nucleus, the structure in mammal cells where genetic material resides. In a study published in the Nov. 10 issue of the Proceedings of the National Academy of Sciences, however, the research team led by Wirtz reported the discovery of a fibrous structure that holds the nucleus in its place. The researchers call this new network structure the perinuclear actin cap.

“In healthy cells, the perinuclear actin cap is a domed structure of bundled filaments that sits above the nucleus, sort of like a net that is tethered all around to the perimeter of the cell membrane,” Wirtz said. This configuration pushes the nucleus down toward the base of the cell and also creates the distinctive flattened shape of normal cells. Cells with cancer, muscular dystrophy or progeria, however, lack this distinctive cap, allowing the nucleus to float upward toward the top of the cell’s membrane. These diseased cells may appear more rounded and bulbous.

“The cap controls the shape of the nucleus by controlling the shape of the cell itself,” Wirtz said.

The perinuclear actin cap was discovered while the team was trying to find out if cell shape controls nucleus shape. By growing cells on a surface with alternating sticky and non-sticky stripes, the researchers noticed that as cells grew along a sticky stripe, their nuclei elongated as well. Using a confocal microscope -- a special kind of microscope that can view an object one “slice” at a time -- doctoral student Shyam Khatau was able to reconstruct the cell in three dimensions. By stacking the confocal microscope images together, Khatau, who is affiliated with the Johns Hopkins Institute for NanoBioTechnology, was able to produce short movies showing the 3-D structure of the cells, the nucleus and the perinuclear actin cap. (The movies are online at http://inbt.jhu.edu/outreach/media-library/video.)

“That’s when we saw the cap,” Khatau said, “and Dr. Wirtz realized we were on to something.”

The cap’s role in disease became evident when Khatau tested cells without the gene to produce lamin A/C, a protein found in the membrane of the nucleus of normal cells but absent in the nuclear membrane of cells from people with muscular dystrophy. Cells without lamin A/C failed to produce the perinuclear actin cap.

“We next plan to study how the cap’s effect on the shape of the nucleus affects what genes the cells express,” said Wirtz.

Khatau, who is pursuing his doctorate in the Department of Chemical and Biomolecular Engineering, is lead author of the journal article. Additional Johns Hopkins authors on this paper are Wirtz; doctoral student Christopher M. Hale and senior Meet Patel from the Whiting School of Engineering’s Department of Chemical and Biomolecular Engineering; and Peter C. Searson, a professor in the school’s Department of Materials Science and Engineering. Other co-authors were P. J. Stewart-Hutchinson and Didier Hodzic from the School of Medicine at the Washington University in St. Louis and Colin L. Stewart from the Institute of Medical Biology, Singapore.

This work was funded by the National Institutes of Health and the Muscular Dystrophy Association.

Color images and video of the researchers available; contact Mary Spiro.

Related Links:
PNAS journal article: http://www.pnas.org/content/106/45/19017.full.pdf+html
Johns Hopkins Engineering in Oncology Center: http://engineering.oncology.jhu.edu/
Johns Hopkins Institute for NanoBioTechnology: http://inbt.jhu.edu
Department of Chemical and Biomolecular Engineering: http://www.jhu.edu/chembe/

Mary Spiro | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>