Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Cell’s ‘Cap’ of Bundled Fibers Could Yield Clues to Disease

04.12.2009
It turns out that wearing a cap is good for you, at least if you are a mammal cell.

Researchers from the Johns Hopkins Engineering in Oncology Center have shown that in healthy cells, a bundled “cap” of thread-like fibers holds the cell’s nucleus, its genetic storehouse, in its proper place.

Understanding this cap’s influence on cell and nuclear shape, the researchers say, could provide clues to the diagnosis and treatment of diseases such as cancer, muscular dystrophy and the age-accelerating condition known as progeria.

“Under a microscope, the nucleus of a sick cell appears to bulge toward the top, while the nucleus of a healthy cell appears as a flattened disk that clings to the base,” said principal investigator Denis Wirtz, professor of chemical and biomolecular engineering and director of the Engineering in Oncology Center. “If we can figure out how and why this shape-changing occurs, we may learn how to detect, treat or perhaps even prevent some serious medical disorders.”

Scientists have known that misshapen nuclei are an indicator of disease, Wirtz said, but they were not certain how a cell controlled the shape of its nucleus, the structure in mammal cells where genetic material resides. In a study published in the Nov. 10 issue of the Proceedings of the National Academy of Sciences, however, the research team led by Wirtz reported the discovery of a fibrous structure that holds the nucleus in its place. The researchers call this new network structure the perinuclear actin cap.

“In healthy cells, the perinuclear actin cap is a domed structure of bundled filaments that sits above the nucleus, sort of like a net that is tethered all around to the perimeter of the cell membrane,” Wirtz said. This configuration pushes the nucleus down toward the base of the cell and also creates the distinctive flattened shape of normal cells. Cells with cancer, muscular dystrophy or progeria, however, lack this distinctive cap, allowing the nucleus to float upward toward the top of the cell’s membrane. These diseased cells may appear more rounded and bulbous.

“The cap controls the shape of the nucleus by controlling the shape of the cell itself,” Wirtz said.

The perinuclear actin cap was discovered while the team was trying to find out if cell shape controls nucleus shape. By growing cells on a surface with alternating sticky and non-sticky stripes, the researchers noticed that as cells grew along a sticky stripe, their nuclei elongated as well. Using a confocal microscope -- a special kind of microscope that can view an object one “slice” at a time -- doctoral student Shyam Khatau was able to reconstruct the cell in three dimensions. By stacking the confocal microscope images together, Khatau, who is affiliated with the Johns Hopkins Institute for NanoBioTechnology, was able to produce short movies showing the 3-D structure of the cells, the nucleus and the perinuclear actin cap. (The movies are online at http://inbt.jhu.edu/outreach/media-library/video.)

“That’s when we saw the cap,” Khatau said, “and Dr. Wirtz realized we were on to something.”

The cap’s role in disease became evident when Khatau tested cells without the gene to produce lamin A/C, a protein found in the membrane of the nucleus of normal cells but absent in the nuclear membrane of cells from people with muscular dystrophy. Cells without lamin A/C failed to produce the perinuclear actin cap.

“We next plan to study how the cap’s effect on the shape of the nucleus affects what genes the cells express,” said Wirtz.

Khatau, who is pursuing his doctorate in the Department of Chemical and Biomolecular Engineering, is lead author of the journal article. Additional Johns Hopkins authors on this paper are Wirtz; doctoral student Christopher M. Hale and senior Meet Patel from the Whiting School of Engineering’s Department of Chemical and Biomolecular Engineering; and Peter C. Searson, a professor in the school’s Department of Materials Science and Engineering. Other co-authors were P. J. Stewart-Hutchinson and Didier Hodzic from the School of Medicine at the Washington University in St. Louis and Colin L. Stewart from the Institute of Medical Biology, Singapore.

This work was funded by the National Institutes of Health and the Muscular Dystrophy Association.

Color images and video of the researchers available; contact Mary Spiro.

Related Links:
PNAS journal article: http://www.pnas.org/content/106/45/19017.full.pdf+html
Johns Hopkins Engineering in Oncology Center: http://engineering.oncology.jhu.edu/
Johns Hopkins Institute for NanoBioTechnology: http://inbt.jhu.edu
Department of Chemical and Biomolecular Engineering: http://www.jhu.edu/chembe/

Mary Spiro | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>