Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CO2 as a Carbon Source?

16.07.2012
Homogeneous catalysis: ruthenium phosphine complex hydrogenates carbon dioxide to make methanol

Fossil-based resources are declining and their use releases the greenhouse gas CO2. Both of these problems could be significantly mitigated if we could use CO2 as a carbon source for the production of fuels and chemical feedstocks.

Various different approaches are currently being explored for the catalytic conversion of CO2 to methanol (CH3OH). In the journal Angewandte Chemie, German researchers have now introduced a new possibility to conduct this stepwise reaction of CO2 in solution with help of a homogeneous catalyst.

Methanol and its products can not only be used as a fuel or for driving fuel cells, they are also a versatile feedstock for chemical industry. The conventional industrial process for the production of methanol starts with syngas, a mixture of hydrogen and carbon monoxide obtained from fossil resources. The process requires extremely high pressures and temperatures, involving a heterogeneous catalyst, which is a solid and therefore in a different phase than the gaseous or liquid educts and products.

A number of approaches for converting carbon dioxide (CO2) to methanol (CH3OH) have been developed. The big challenge for catalytic researchers is not only to activate the very stable CO2 molecule but also to catalyze the multistep conversion to methanol. Tailored catalysts are the key to enable the activation of this poorly reactive C1 building block.

Scientists from the RWTH Aachen have pursued a new approach to obtain methanol by the hydrogenation of CO2 with elemental hydrogen. While most previous methods use heterogeneous catalysts, this process is homogeneous. This means that the catalyst and the reactants are in the same phase, a solution. Homogeneous catalysis often require milder reaction conditions and the targeted development of the catalyst often enables a better selectivity. However, a homogeneous metal complex that is able to catalyze the multistep conversion of CO2 and hydrogen into methanol has not yet been reported.

The team led by Jürgen Klankermayer and Walter Leitner has now developed a tailored catalyst for this complex conversion, namely a special ruthenium phosphine complex. The catalyst is dissolved in a solvent, in the simplest case in methanol itself, and put under pressure together with CO2 and hydrogen in an autoclave. It subsequently connects a molecule of CO2 in a stepwise fashion with three molecules of hydrogen to produce methanol and water.

“This is the first example of the hydrogenation of CO2 to methanol by use of a molecularly defined catalyst under relatively mild reaction conditions,” explain Leitner and Klankermayer. “We are now investigating in detail how the reaction works in order to develop our catalyst further.”

About the Author
Dr Jürgen Klankermayer is Professor at the Institute for Technical and Macromolecular Chemistry (ITMC) at the RWTH Aachen University, leading the group “Mechanisms in Catalysis”. His research includes the topics mechanisms in catalysis, NMR spectroscopy in catalysis, asymmetric catalysis, application of ionic liquids in catalysis, fuels and chemicals from biomass, as well as sustainable industrial chemistry.
Author: Jürgen Klankermayer, RWTH Aachen University (Germany), http://www.tc.rwth-aachen.de/aw/cms/TC/Zielgruppen/~vfu/prof_klankermayer/?lang=en
Title: Hydrogenation of Carbon Dioxide to Methanol by Using a Homogeneous Ruthenium–Phosphine Catalyst

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201202320

Jürgen Klankermayer | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: Angewandte Chemie CH3OH CO2 Homogeneous RWTH ionic liquid

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>