Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cancer protein’s journey to cell membrane

11.04.2014

KRas moves between various membranes within the cell, so that it is available in a sufficient quantity at its actual destination

The cancer protein KRas is a factor in the development of several types of cancer. Mutated KRas, for example, can be found in a large number of all tumour cells in patients with pancreatic cancer. It sits on the inner leaflet of the cell membrane and relays signals into the cell’s interior.


Distribution of the cancer protein KRas in a cell.

© M. Schmick

Scientists at the Max Planck Institute of Molecular Physiology in Dortmund have now discovered why KRas is almost exclusively found at the cell membrane when observed under the microscope. Apparently, the protein is not specifically sent to the cell membrane after it is formed, but is also located on other membrane systems within the cell for its entire life span.

In order for it to be transported by special transport vesicles from the vicinity of the cell nucleus to the cell membrane, the solubilising factor PDEδ and its antagonist Arl2 must be active. Without the two of them, KRas would spread to cell membranes. The researchers can use their results to better understand how deltarasin works, which is a potential anti-cancer drug that they have developed.

The protein KRas acts as a molecular switch in relaying signals to the cell’s interior. Among other things, such signals control cell growth. In order for KRas to be able to function correctly, it must remain on the inner leaflet of the cell membrane for a sufficient period of time. Its water-insoluble lipid anchor helps it to achieve this.

However, this also anchors the protein to other intracellular membranes. KRas therefore has an area of positive charges near this lipid anchor. Similar to a polystyrene ball in a plastic bag, the electrostatic interaction of these positive charges with the negatively charged inner leaflet of the cell membrane reinforces the lipid anchoring.

But even lipid anchor and positive charges are not enough to ensure that KRas is permanently enriched at the cell membrane. According to the results obtained by the researchers in Dortmund, many KRas molecules would still be lost on the available surface of the rest of the membrane systems in the cell, which is 200 times bigger than that of the cell membrane. Using complex computer simulations, the scientists evaluated data from fluorescence microscopy experiments and tracked the movement of KRas on its journey though the cell.

“Our results show that the cell membrane is by no means the final destination of KRas, which must only be encountered once. Instead, KRas constantly and unspecifically re-distributes to the various membrane systems of the cell and must then be concentrated on the inner leaflet of the cell membrane via a continuous cycle,” explains Malte Schmick from the Max Planck Institute of Molecular Physiology.

In the first step of this cycle, the soluble protein PDEδ shields the lipid anchor of KRas like a glove, thus making KRas water-soluble. This prevents KRas from simply finding some arbitrary membrane. Swimming in the cytoplasm, KRas can thus explore the cell. When it gets close to the nucleus of the cell, the activity of the protein Arl2 removes this glove. KRas is now insoluble in water again and can be trapped on membranes and transported back to the cell membrane by vesicles.

The cell therefore does not have a unique targeting system for KRas, which sends it exclusively to the cell membrane. Instead, the protein redistributes to all membranes and is repeatedly sorted from the wrong membranes to the correct one. “Each KRas molecule lives for several hours before the cell disassembles it again. After seven minutes, half of all KRas molecules are internalized from the cell membrane to be subjected to the cycle and sent back to the cell membrane. In total, each KRas molecule travels for approximately 20 minutes before it reaches the cell membrane again,” says Schmick.

The results obtained by the scientists in Dortmund pave the way for the development of new cancer drugs. This is due to the fact that KRas is modified in many forms of cancer to such an extent that it is permanently active and the cell can no longer switch it off. One-third of all tumours contain cells with mutations of Ras proteins. In the case of intestinal cancer for example, mutated KRas prevents successfully using antibody treatment against epidermal growth factor receptors (EGFR).

“We can now develop active agents that reduce the enrichment of mutated, permanently active KRas at the cell membrane,” explains Philippe Bastiaens, Director at the Max Planck Institute in Dortmund. In 2013, he worked with colleagues Herbert Waldmann and Alfred Wittinghofer to develop an inhibitor, known as deltarasin, to block the PDEδ solubilizing activity. Initial experiments on mice have shown that the active agent considerably slows the growth of tumours. Even though scientists had been aware of the relevance of PDEδ for a while, this work now explains for the first time the mechanism by which deltarasin prohibits KRas from being enriched at the cell membrane and causes it to be distributed throughout the entire cell.

Contact 

Prof. Dr. Philippe Bastiaens
Max Planck Institute of Molecular Physiology, Dortmund
Phone: +49 231 1332-200
Fax: +49 231 1332-299
Email:philippe.bastiaens@mpi-dortmund.mpg.de
 
Dr. Peter Herter
Max Planck Institute of Molecular Physiology, Dortmund
Phone: +49 231 133-2500
Fax: +49 231 133-2599 

Original publication

 
Malte Schmick, Nachiket Vartak, Björn Papke, Marija Kovacevic, Dina C. Truxius, Lisaweta Rossmannek, Philippe I.H. Bastiaens
KRas localizes to the plasma membrane by spatial cycles of solubilization, trapping and vesicular transport
Cell, 10 April 2014

Prof. Dr. Philippe Bastiaens | Max-Planck-Institut

Further reports about: Molecular Physiology anchor experiments factor signals tumours vesicles

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>