Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A cancer protein’s journey to cell membrane

11.04.2014

KRas moves between various membranes within the cell, so that it is available in a sufficient quantity at its actual destination

The cancer protein KRas is a factor in the development of several types of cancer. Mutated KRas, for example, can be found in a large number of all tumour cells in patients with pancreatic cancer. It sits on the inner leaflet of the cell membrane and relays signals into the cell’s interior.


Distribution of the cancer protein KRas in a cell.

© M. Schmick

Scientists at the Max Planck Institute of Molecular Physiology in Dortmund have now discovered why KRas is almost exclusively found at the cell membrane when observed under the microscope. Apparently, the protein is not specifically sent to the cell membrane after it is formed, but is also located on other membrane systems within the cell for its entire life span.

In order for it to be transported by special transport vesicles from the vicinity of the cell nucleus to the cell membrane, the solubilising factor PDEδ and its antagonist Arl2 must be active. Without the two of them, KRas would spread to cell membranes. The researchers can use their results to better understand how deltarasin works, which is a potential anti-cancer drug that they have developed.

The protein KRas acts as a molecular switch in relaying signals to the cell’s interior. Among other things, such signals control cell growth. In order for KRas to be able to function correctly, it must remain on the inner leaflet of the cell membrane for a sufficient period of time. Its water-insoluble lipid anchor helps it to achieve this.

However, this also anchors the protein to other intracellular membranes. KRas therefore has an area of positive charges near this lipid anchor. Similar to a polystyrene ball in a plastic bag, the electrostatic interaction of these positive charges with the negatively charged inner leaflet of the cell membrane reinforces the lipid anchoring.

But even lipid anchor and positive charges are not enough to ensure that KRas is permanently enriched at the cell membrane. According to the results obtained by the researchers in Dortmund, many KRas molecules would still be lost on the available surface of the rest of the membrane systems in the cell, which is 200 times bigger than that of the cell membrane. Using complex computer simulations, the scientists evaluated data from fluorescence microscopy experiments and tracked the movement of KRas on its journey though the cell.

“Our results show that the cell membrane is by no means the final destination of KRas, which must only be encountered once. Instead, KRas constantly and unspecifically re-distributes to the various membrane systems of the cell and must then be concentrated on the inner leaflet of the cell membrane via a continuous cycle,” explains Malte Schmick from the Max Planck Institute of Molecular Physiology.

In the first step of this cycle, the soluble protein PDEδ shields the lipid anchor of KRas like a glove, thus making KRas water-soluble. This prevents KRas from simply finding some arbitrary membrane. Swimming in the cytoplasm, KRas can thus explore the cell. When it gets close to the nucleus of the cell, the activity of the protein Arl2 removes this glove. KRas is now insoluble in water again and can be trapped on membranes and transported back to the cell membrane by vesicles.

The cell therefore does not have a unique targeting system for KRas, which sends it exclusively to the cell membrane. Instead, the protein redistributes to all membranes and is repeatedly sorted from the wrong membranes to the correct one. “Each KRas molecule lives for several hours before the cell disassembles it again. After seven minutes, half of all KRas molecules are internalized from the cell membrane to be subjected to the cycle and sent back to the cell membrane. In total, each KRas molecule travels for approximately 20 minutes before it reaches the cell membrane again,” says Schmick.

The results obtained by the scientists in Dortmund pave the way for the development of new cancer drugs. This is due to the fact that KRas is modified in many forms of cancer to such an extent that it is permanently active and the cell can no longer switch it off. One-third of all tumours contain cells with mutations of Ras proteins. In the case of intestinal cancer for example, mutated KRas prevents successfully using antibody treatment against epidermal growth factor receptors (EGFR).

“We can now develop active agents that reduce the enrichment of mutated, permanently active KRas at the cell membrane,” explains Philippe Bastiaens, Director at the Max Planck Institute in Dortmund. In 2013, he worked with colleagues Herbert Waldmann and Alfred Wittinghofer to develop an inhibitor, known as deltarasin, to block the PDEδ solubilizing activity. Initial experiments on mice have shown that the active agent considerably slows the growth of tumours. Even though scientists had been aware of the relevance of PDEδ for a while, this work now explains for the first time the mechanism by which deltarasin prohibits KRas from being enriched at the cell membrane and causes it to be distributed throughout the entire cell.

Contact 

Prof. Dr. Philippe Bastiaens
Max Planck Institute of Molecular Physiology, Dortmund
Phone: +49 231 1332-200
Fax: +49 231 1332-299
Email:philippe.bastiaens@mpi-dortmund.mpg.de
 
Dr. Peter Herter
Max Planck Institute of Molecular Physiology, Dortmund
Phone: +49 231 133-2500
Fax: +49 231 133-2599 

Original publication

 
Malte Schmick, Nachiket Vartak, Björn Papke, Marija Kovacevic, Dina C. Truxius, Lisaweta Rossmannek, Philippe I.H. Bastiaens
KRas localizes to the plasma membrane by spatial cycles of solubilization, trapping and vesicular transport
Cell, 10 April 2014

Prof. Dr. Philippe Bastiaens | Max-Planck-Institut

Further reports about: Molecular Physiology anchor experiments factor signals tumours vesicles

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>