Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Bug's (Sex) Life: Diving Beetles Offer Clues About Sexual Selection

07.02.2012
Studies of diving beetles suggest sperm evolution may be driven by changes in female reproductive organs, challenging the paradigm of post-mating sexual selection being driven mostly by competition among sperm.

Studying female reproductive tracts and sperm in diving beetles (Dytiscidae), researchers from the University of Arizona and Syracuse University have obtained a glimpse into a bizarre and amazing world of sperm that can take on a variety of forms ­ including joining together into conglomerates that navigate the twisted mazes of the female reproductive tract.

Analyses of the evolutionary relationships among diving beetles reveal that sperm form appears to follow function dictated by female reproductive organs.

"Our findings show that sexual selection isn't always all male-male competition," said Dawn Higginson, the study's lead author who is a postdoctoral research associate at the UA's Center for Insect Science, who did much of the work for this study with her doctorate advisor Scott Pitnick, a professor of biology at Syracuse University in Syracuse, N.Y.

"Rather than standing at the sidelines, it appears that females can take the lead in driving the evolution of male sexual traits," Higginson said.

The study results will be published the week of Feb. 6 in the journal Proceedings of the National Academy of Sciences.

Unlike most mammals in which fertilization involves large numbers of simple-built, individual sperm cells racing for the egg through a rather straightforward female reproductive tract, many other animal groups, especially invertebrates such as mollusks and insects, have evolved complex anatomical variations in both sperm and female reproductive organs.

According to Pitnick, sperm shape does not show much variation in species whose eggs are fertilized after they have left the female, such as most fish, for example.

"But once internal fertilization evolves, something happens and evolution goes crazy," he said. "In almost every animal group with internal fertilization that has been looked at, sperm have evolved into a real diversity of forms."

Although copulation and fertilization occur within hours or days of each other in mammals and other groups, it is more common for the female to store the sperm she received from one or several males, sometimes for years, and exert control over when and how her eggs are fertilized.

For this study, Higginson compared features of female reproductive tracts and sperm from 42 species of diving beetles. Close to 4,000 species of diving beetles occur worldwide.

"Diving beetles can be found in just about every puddle of water," she said. "Here in the Arizona desert, most cattle tanks or natural pools will have numerous species of them. They're everywhere, except salt water, which they can't tolerate."

All are voracious predators, such as the Great Diving Beetle, which is common in Europe. Both larva and adult stalk small fish or tadpoles underwater, until they pounce and subdue them with pointy mandibles shaped like curved daggers.

In an attempt to better understand sperm evolution, Higginson and Pitnick came across descriptions of paired sperm in diving beetles dating back more than a hundred years. Female reproductive tracts in these animals were not systematically investigated until ten years ago.

Previous studies on the interaction between sperm and female reproductive organs established simple relationships between the two such as duct length and sperm length, but did not look much farther than that, Higginson said.

She remembered squashing a spermatheca, which is the part of the female tract that stores the sperm, on a microscope slide, and out came a single, enormous mass of sperm, all connected to each other and swirling and wiggling around. Previous studies had reported diving beetle species whose sperm cells join up in pairs, but seeing lots of individual sperm cells aggregating into one single conjugate was something unexpected and new.

"I could see the tails beating and moving the whole conjugate around,"
Higginson said. "As far as sperm goes, this is clearly unlike anything we have ever seen before."

In some species she found hundreds or even thousands of sperm cells stacked up like badminton birdies, forming a long, fairly rigid rod of sperm resembling a fuzzy worm as it moves around inside the female. In other species, sperm are connected by their heads with some kind of glue.

Higginson then set out to investigate what evolutionary forces are the most likely to drive all this unexpected diversity. In an unprecedented effort, she measured many different parameters such as overall sperm length, head length, tail length, length of the female ducts, area of the sperm storage chambers, presence of conjugates, head shape and so on.

Using statistical tools to analyze evolutionary relationships among traits, she then reconstructed the most likely evolutionary relationships between sperm and female reproductive tracts.

"We can reconstruct what the ancestors of these diving beetles looked like," Higginson explained. "We find they had conjugated sperm and rather compact female reproductive tracts. The female morphology undergoes evolutionary change, and then sperm compensates for that. We can't say from this study that the males are catching up but it's suggesting there could be an arms race."

Pitnick said: "When you look at the intricate morphology of the reproductive tracts, you can't help but think that sperm needs Swiss army knives and compasses to make it through there. The females make it really complicated."

"In most cases of sexual selection, we expect co-evolution between a female preference for a male trait, like flashy tails in peacocks,"

Higginson said. "Females prefer males with flashy tails, and then females want bigger and flashier tails after that, setting up a co-evolutionary cycle. We are not positive that this is happening here, but is possible that all this diversity we see in the sperm is the equivalent of flashy peacock feathers, and females have evolved reproductive tracts that favor one kind of sperm over another."

"Perhaps there is something else that is influencing the evolution of the female reproductive tract," she added. "Perhaps it has to be big enough to handle an egg properly or something like that. The point is that the females are driving the sexual evolution. The sperm cells just have to keep up."

Pitnick added that given that no other cell type evolves as rapidly as sperm, variations in compatibility between sperm and the female reproductive system could be an important engine of speciation.

"If populations become separated and those traits are evolving rapidly in different directions, they will separate into two different species very quickly."

As in many other species, female diving beetles may not have a lot of control over with whom they mate, and that may be a driving factor in the evolution of intricate reproductive systems.

Being insects that spend most of their lives underwater, the beetles have to breathe air regularly.

"They come to the surface and take a little bubble with them when they swim back down," Higginson said. "Male diving beetles have suction cups on their feet that they use to grab on to the females. They can even prevent the females from breathing when they're holding on to their backs, which may be an attempt to pressure them into mating."

"One reason for this situation in which sperm from different males compete inside the female may be that females can mate with whomever they encounter and choose later," she said.

The study, "Female reproductive tract form drives the evolution of complex sperm morphology," was co-authored by Kelly Miller from the University of New Mexico, in Albuquerque, N.M., Kari Segraves and Scott Pitnick from Syracuse University in Syracuse, N.Y.

LINKS:
Video file showing a single sperm conjugate from the diving beetle Hygrotus sayi swirling under a microscope:

http://dl.dropbox.com/u/41440121/Hygrotus sayi 200x/Resources/Hygrotus sayi 200x.mov (Please make sure spaces are preserved when copying and pasting this URL)

Dawn Higginson's Website:
http://cis.arl.arizona.edu/PERT/people/Higginson/index.htm
Center for Insect Science, The University of Arizona:
http://cis.arl.arizona.edu
CONTACTS:
Dawn Higginson
Center for Insect Science and Department of Ecology and Evolutionary Biology The University of Arizona
520-621-4005
dmhigginson@email.arizona.edu
Daniel Stolte
University Communications
stolte@email.arizona.edu
520-626-4402

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>