Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A budding role for a cellular dynamo

Brandeis scientists identify a key cellular factor that regulates length of actin filaments

Actin, a globular protein found in all eukaryotic cells, is a workhorse that varies remarkably little from baker's yeast to the human body. Part of the cytoskeleton, actin assembles into networks of filaments that give the cell structural plasticity while driving many essential functions, from cell motility and division, to vesicle and organelle transport within the cell.

In a groundbreaking new study in the current issue of Developmental Cell, Brandeis researchers raise the curtain on how this actin maintains just the right filament length to keep the cell healthy and happily dividing.

Using baker's yeast as the model organism, Brandeis researchers Melissa Chesarone, Christopher Gould, and James Moseley, all in the lab of biologist Bruce Goode, set out to discover how the length of actin fibers is controlled. By answering this question, the scientists sought to advance understanding of asymmetrical cell division, a process that not only allows yeast to divide, but also ensures the proper renewal of human stem cells and plays a crucial role in early stages of embryonic development.

In yeast cells, as in all other cells, actin fibers serve as internal "railways" or tracks that give the cell directionality and provide the wherewithal for transporting various molecular and membrane-bound cargoes from one end of the cell to the other. Molecular machines called formins produce many of the actin fibers, but in the absence of a displacement factor to put a brake on the process, formins will essentially stop at nothing, producing excessively long actin filaments at ridiculously fast rates, and wreaking cellular havoc, says Goode. In humans, genetic defects in formins are associated with conditions such as infertility and deafness.

"We wanted to know how you turn the formins off. What disrupts the interaction of the formin with the actin filament, thus terminating actin assembly and regulating its length?" Goode explained.

The researchers discovered that a protein called Bud14 is a potent inhibitor, directly binding to the formin and displacing it, thereby producing actin filaments of normal length, a prerequisite for proper actin cable architecture and cargo transport.

"In all animal, plant, and human cells, life depends on rapidly producing actin filaments of defined lengths, and we now have an important clue as to how this is regulated," said Goode. "We're now homing in on the precise mechanism by which Bud14 works and extending this analysis to mammalian cells. Once again, yeast has provided the ideal system in which to pioneer a basic problem that applies to most other species."

Laura Gardner | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>