Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A breakthrough in understanding the biology and treatment of ovarian cancer

22.02.2012
Researchers at The Pennsylvania State University College of Medicine, Hershey, Pennsylvania have discovered that the presence and integrity of the opioid growth factor receptor (OGFr), which mediates the inhibitory action of opioid growth factor (OGF) on cell proliferation, is a key to understanding the progression and treatment of human ovarian cancer.

Transplantation of human ovarian cancer cells that were molecularly engineered to have a reduced expression of OGFr, into immunocompromised mice resulted in ovarian tumors that grew rapidly. This discovery, reported in the February 2012 issue of Experimental Biology and Medicine, provides fresh new insights into the pathogenesis and therapy of a lethal cancer that is the fifth leading cause of cancer-related mortality among women in the USA, and has a death rate that is unchanged for over 75 years.

The OGF (also-termed [Met5]-enkephalin)-OGFr axis plays a fundamental role in cancer, development, and cellular renewal by regulating cell proliferation. An important question addressed in this study relates to the requirement of this peptide-receptor system for the progression of carcinogenesis. Human ovarian cancer cell lines that were genetically modified to underexpress OGFr grew far more rapidly in tissue culture than control (empty vector/wildtype) cell lines. Moreover, the addition of OGF to cultures of these genetically modified cells did not respond to the inhibitory peptide and change cell number, indicating that the loss of OGFr interfered with the function of the OGF-OGFr axis with respect to regulating cell proliferation. Immunocompromised mice injected with ovarian cancer cells that had a reduction in OGFr displayed tumors much earlier than controls, and these tumors grew faster than controls.

Putting this information together with knowledge that the pathway for OGF-OGFr regulation of cell proliferation in ovarian cancer is by way of increasing the cyclin-dependent inhibitory kinase proteins p16 and p21, we now can understand that minimizing the quantity of OGFr results in an increase in the number of cells entering the G1/S phase of the cell cycle. This has the net effect of increasing the progression of tumorigenic events. These results reveal the critical nature of OGFr in human ovarian cancer, and that the receptor along with its ligand, OGF, is essential for determining the course of these neoplasias.

The research team was comprised of Dr. Ian S. Zagon, Distinguished University Professor, and Dr. Patricia J. McLaughlin, Professor, along with Dr. Renee N. Donahue in the Department of Neural & Behavioral Sciences. Drs. Zagon and McLaughlin discovered that endogenous opioids serve as growth factors, and have been pioneers in translating their findings from the bench to the bedside. Dr. Zagon states that "Over 75% of women are initially diagnosed with advanced ovarian cancer. Despite excellent initial response to cytoreductive surgery and adjuvant chemotherapy, 65% of these patients relapse within two years. However, only palliative care is available for these patients. With evidence from Phase I and II clinical trials as to the success of OGF for the treatment of advanced pancreatic cancer and knowledge presented herein that the OGF-OGFr axis is a critical determinant of the course of ovarian neoplasia, the present study raises the possibility of using this information to modulate the OGF-OGFr pathway with i) exogenous OGF, ii) imiquimod to upregulate OGFr, and/or iii) low dose naltrexone (LDN) to increase OGF and OGFr, as a therapeutic strategy for ovarian carcinoma." Co-author Dr. McLaughlin adds that "A major problem in ovarian cancer is the need for diagnostic markers - both for early diagnosis and to monitor treatment modalities. Since some of the signaling pathways for OGF-OGFr are known (e.g., karyopherin â, Ran, p16, p21), the components of this system would represent a worthwhile focus in designing diagnostic assays."

Dr. Donahue, who conducted the ovarian cancer studies and its relationship to the OGF-OGFr axis for her doctoral dissertation, states that "Ovarian cancers frequently have a methylation of p16 that is associated with an increased progression of ovarian cancer and a loss of OGFr in ovarian tumors. The diminished expression of OGFr and its repercussions on tumorigenesis, only adds to the concern about the need for information concerning genetic and epigenetic changes that may impact the course of disease and its treatment. Our findings also hold potentially ominous overtones for those individuals taking naltrexone for addictive disorders. The dosage used for treatment of addiction blocks opioid receptors continually. The present findings that diminishing the OGF-OGFr axis by depleting the receptor exacerbates tumorigenesis, could place these patients using naltrexone at risk for accelerating disease processes that involve cell proliferation."

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "This compelling evidence confirms the absolute requirement for OGFr (and OGF) as a tonically active inhibitory regulatory mechanism in ovarian cancer. As a corollary, amplifying the OGF-OGFr pathway is a novel and highly effective biotherapeutic strategy to suppress the progression of these deadly cancers."

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.rsmjournals.com/

Dr. Ian Zagon | EurekAlert!
Further information:
http://www.sebm.org

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>