Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A breakthrough in understanding the biology and treatment of ovarian cancer

22.02.2012
Researchers at The Pennsylvania State University College of Medicine, Hershey, Pennsylvania have discovered that the presence and integrity of the opioid growth factor receptor (OGFr), which mediates the inhibitory action of opioid growth factor (OGF) on cell proliferation, is a key to understanding the progression and treatment of human ovarian cancer.

Transplantation of human ovarian cancer cells that were molecularly engineered to have a reduced expression of OGFr, into immunocompromised mice resulted in ovarian tumors that grew rapidly. This discovery, reported in the February 2012 issue of Experimental Biology and Medicine, provides fresh new insights into the pathogenesis and therapy of a lethal cancer that is the fifth leading cause of cancer-related mortality among women in the USA, and has a death rate that is unchanged for over 75 years.

The OGF (also-termed [Met5]-enkephalin)-OGFr axis plays a fundamental role in cancer, development, and cellular renewal by regulating cell proliferation. An important question addressed in this study relates to the requirement of this peptide-receptor system for the progression of carcinogenesis. Human ovarian cancer cell lines that were genetically modified to underexpress OGFr grew far more rapidly in tissue culture than control (empty vector/wildtype) cell lines. Moreover, the addition of OGF to cultures of these genetically modified cells did not respond to the inhibitory peptide and change cell number, indicating that the loss of OGFr interfered with the function of the OGF-OGFr axis with respect to regulating cell proliferation. Immunocompromised mice injected with ovarian cancer cells that had a reduction in OGFr displayed tumors much earlier than controls, and these tumors grew faster than controls.

Putting this information together with knowledge that the pathway for OGF-OGFr regulation of cell proliferation in ovarian cancer is by way of increasing the cyclin-dependent inhibitory kinase proteins p16 and p21, we now can understand that minimizing the quantity of OGFr results in an increase in the number of cells entering the G1/S phase of the cell cycle. This has the net effect of increasing the progression of tumorigenic events. These results reveal the critical nature of OGFr in human ovarian cancer, and that the receptor along with its ligand, OGF, is essential for determining the course of these neoplasias.

The research team was comprised of Dr. Ian S. Zagon, Distinguished University Professor, and Dr. Patricia J. McLaughlin, Professor, along with Dr. Renee N. Donahue in the Department of Neural & Behavioral Sciences. Drs. Zagon and McLaughlin discovered that endogenous opioids serve as growth factors, and have been pioneers in translating their findings from the bench to the bedside. Dr. Zagon states that "Over 75% of women are initially diagnosed with advanced ovarian cancer. Despite excellent initial response to cytoreductive surgery and adjuvant chemotherapy, 65% of these patients relapse within two years. However, only palliative care is available for these patients. With evidence from Phase I and II clinical trials as to the success of OGF for the treatment of advanced pancreatic cancer and knowledge presented herein that the OGF-OGFr axis is a critical determinant of the course of ovarian neoplasia, the present study raises the possibility of using this information to modulate the OGF-OGFr pathway with i) exogenous OGF, ii) imiquimod to upregulate OGFr, and/or iii) low dose naltrexone (LDN) to increase OGF and OGFr, as a therapeutic strategy for ovarian carcinoma." Co-author Dr. McLaughlin adds that "A major problem in ovarian cancer is the need for diagnostic markers - both for early diagnosis and to monitor treatment modalities. Since some of the signaling pathways for OGF-OGFr are known (e.g., karyopherin â, Ran, p16, p21), the components of this system would represent a worthwhile focus in designing diagnostic assays."

Dr. Donahue, who conducted the ovarian cancer studies and its relationship to the OGF-OGFr axis for her doctoral dissertation, states that "Ovarian cancers frequently have a methylation of p16 that is associated with an increased progression of ovarian cancer and a loss of OGFr in ovarian tumors. The diminished expression of OGFr and its repercussions on tumorigenesis, only adds to the concern about the need for information concerning genetic and epigenetic changes that may impact the course of disease and its treatment. Our findings also hold potentially ominous overtones for those individuals taking naltrexone for addictive disorders. The dosage used for treatment of addiction blocks opioid receptors continually. The present findings that diminishing the OGF-OGFr axis by depleting the receptor exacerbates tumorigenesis, could place these patients using naltrexone at risk for accelerating disease processes that involve cell proliferation."

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "This compelling evidence confirms the absolute requirement for OGFr (and OGF) as a tonically active inhibitory regulatory mechanism in ovarian cancer. As a corollary, amplifying the OGF-OGFr pathway is a novel and highly effective biotherapeutic strategy to suppress the progression of these deadly cancers."

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.rsmjournals.com/

Dr. Ian Zagon | EurekAlert!
Further information:
http://www.sebm.org

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>