Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A breakthrough in understanding the biology and treatment of ovarian cancer

22.02.2012
Researchers at The Pennsylvania State University College of Medicine, Hershey, Pennsylvania have discovered that the presence and integrity of the opioid growth factor receptor (OGFr), which mediates the inhibitory action of opioid growth factor (OGF) on cell proliferation, is a key to understanding the progression and treatment of human ovarian cancer.

Transplantation of human ovarian cancer cells that were molecularly engineered to have a reduced expression of OGFr, into immunocompromised mice resulted in ovarian tumors that grew rapidly. This discovery, reported in the February 2012 issue of Experimental Biology and Medicine, provides fresh new insights into the pathogenesis and therapy of a lethal cancer that is the fifth leading cause of cancer-related mortality among women in the USA, and has a death rate that is unchanged for over 75 years.

The OGF (also-termed [Met5]-enkephalin)-OGFr axis plays a fundamental role in cancer, development, and cellular renewal by regulating cell proliferation. An important question addressed in this study relates to the requirement of this peptide-receptor system for the progression of carcinogenesis. Human ovarian cancer cell lines that were genetically modified to underexpress OGFr grew far more rapidly in tissue culture than control (empty vector/wildtype) cell lines. Moreover, the addition of OGF to cultures of these genetically modified cells did not respond to the inhibitory peptide and change cell number, indicating that the loss of OGFr interfered with the function of the OGF-OGFr axis with respect to regulating cell proliferation. Immunocompromised mice injected with ovarian cancer cells that had a reduction in OGFr displayed tumors much earlier than controls, and these tumors grew faster than controls.

Putting this information together with knowledge that the pathway for OGF-OGFr regulation of cell proliferation in ovarian cancer is by way of increasing the cyclin-dependent inhibitory kinase proteins p16 and p21, we now can understand that minimizing the quantity of OGFr results in an increase in the number of cells entering the G1/S phase of the cell cycle. This has the net effect of increasing the progression of tumorigenic events. These results reveal the critical nature of OGFr in human ovarian cancer, and that the receptor along with its ligand, OGF, is essential for determining the course of these neoplasias.

The research team was comprised of Dr. Ian S. Zagon, Distinguished University Professor, and Dr. Patricia J. McLaughlin, Professor, along with Dr. Renee N. Donahue in the Department of Neural & Behavioral Sciences. Drs. Zagon and McLaughlin discovered that endogenous opioids serve as growth factors, and have been pioneers in translating their findings from the bench to the bedside. Dr. Zagon states that "Over 75% of women are initially diagnosed with advanced ovarian cancer. Despite excellent initial response to cytoreductive surgery and adjuvant chemotherapy, 65% of these patients relapse within two years. However, only palliative care is available for these patients. With evidence from Phase I and II clinical trials as to the success of OGF for the treatment of advanced pancreatic cancer and knowledge presented herein that the OGF-OGFr axis is a critical determinant of the course of ovarian neoplasia, the present study raises the possibility of using this information to modulate the OGF-OGFr pathway with i) exogenous OGF, ii) imiquimod to upregulate OGFr, and/or iii) low dose naltrexone (LDN) to increase OGF and OGFr, as a therapeutic strategy for ovarian carcinoma." Co-author Dr. McLaughlin adds that "A major problem in ovarian cancer is the need for diagnostic markers - both for early diagnosis and to monitor treatment modalities. Since some of the signaling pathways for OGF-OGFr are known (e.g., karyopherin â, Ran, p16, p21), the components of this system would represent a worthwhile focus in designing diagnostic assays."

Dr. Donahue, who conducted the ovarian cancer studies and its relationship to the OGF-OGFr axis for her doctoral dissertation, states that "Ovarian cancers frequently have a methylation of p16 that is associated with an increased progression of ovarian cancer and a loss of OGFr in ovarian tumors. The diminished expression of OGFr and its repercussions on tumorigenesis, only adds to the concern about the need for information concerning genetic and epigenetic changes that may impact the course of disease and its treatment. Our findings also hold potentially ominous overtones for those individuals taking naltrexone for addictive disorders. The dosage used for treatment of addiction blocks opioid receptors continually. The present findings that diminishing the OGF-OGFr axis by depleting the receptor exacerbates tumorigenesis, could place these patients using naltrexone at risk for accelerating disease processes that involve cell proliferation."

Dr. Steven R. Goodman, Editor-in-Chief of Experimental Biology and Medicine, said "This compelling evidence confirms the absolute requirement for OGFr (and OGF) as a tonically active inhibitory regulatory mechanism in ovarian cancer. As a corollary, amplifying the OGF-OGFr pathway is a novel and highly effective biotherapeutic strategy to suppress the progression of these deadly cancers."

Experimental Biology and Medicine is the journal of the Society of Experimental Biology and Medicine. To learn about the benefits of society membership visit www.sebm.org. If you are interested in publishing in the journal please visit http://ebm.rsmjournals.com/

Dr. Ian Zagon | EurekAlert!
Further information:
http://www.sebm.org

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>