Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A boost for cellular profiling

23.09.2013
A new method for analyzing gene expression in single cells opens a window into tumors and other tissues

A team of researchers affiliated with Ludwig Cancer Research and the Karolinska Institutet in Sweden report in the current issue of Nature Methods a dramatically improved technique for analyzing the genes expressed within a single cell -- a capability of relevance to everything from basic research to future cancer diagnostics.

"There are cells in tumors and in healthy tissues that are not present in sufficient numbers to permit analysis using anything but single-cell methods," explains senior author, Rickard Sandberg, PhD. "This method allows us to identify rare and important subpopulations of cells in all sorts of tissues. We can also use it to tease apart, more rigorously than ever before, how the expression of unique suites of genes transform cells from one state to another as, say, an embryo develops into an organism, or a tumor becomes metastatic."

Traditional approaches, which depend on the collective analysis of gene expression in millions of cells at once, tend to obscure biologically significant differences in the genes expressed by specialized cells within a particular kind of tissue. Single-cell analysis of gene expression overcomes this limitation. The leading method for such analysis -- Smart-seq -- was developed in 2012 by the biotechnology firm Illumina, together with Sandberg's laboratory.

To develop the new technique, named Smart-seq2, Sandberg's team conducted more than 450 experiments to improve upon their initial method. The new procedure consistently captures three to four times as many RNA molecules, which often translates into 2,000 more genes per cell than current methods allow. It also captures far more full-length gene sequences, a steep challenge in such studies, which often capture only partial sequences of expressed genes. This will permit researchers to conduct a more granular analysis of how subtle differences between the same genes in different people -- known as single nucleotide polymorphisms (or SNPs) -- contribute to differences in biology and disease.

The new method is likely to be of great value to cancer research. Identifying rare sub-populations of cells in tumors and understanding their role in the survival and progression of cancers can provide invaluable information for the development of diagnostics and targeted therapies. A study recently published by Ludwig researchers described, for example, how certain subpopulations of cells in melanomas can be pushed into a drug-susceptible state and then destroyed by chemotherapy. More such strategies might be devised as researchers get a better handle on the cellular species found in different types of tumors, and the patterns of gene expression that define them.

Because Smart-seq2 relies on off-the-shelf reagents, it costs roughly a twentieth as much as the commercialized kit, which should allow researchers to conduct sophisticated analyses of single cells on a much larger scale. It can also be improved further by the scientific community, since its constituent components and rationale are both open to the public.

Armed with the more effective and affordable Smart-seq2, Sandberg's lab is now moving ahead on projects that require a large-scale, single-cell gene expression analysis. "Now all researchers can do their own single-cell gene expression analysis by buying the components of the process described in this paper and assembling their own kits," says Sandberg.

Rickard Sandberg is an assistant member at the Ludwig Institute for Cancer Research and associate professor and principal investigator at the Department of Cell and Molecular Biology, Karolinska Institutet. This study was funded with grants from the European Research Council, the Swedish Foundation for Strategic Research, and the Swedish Research Council.

For more information on Sandberg's research, please click here: http://www.ludwigcancerresearch.org/location/stockholm-branch/rickard-sandberg-lab.

About Ludwig Cancer Research

Ludwig Cancer Research is an international collaborative network of acclaimed scientists with a 40-year legacy of pioneering cancer discoveries. Ludwig combines basic research with the ability to translate its discoveries and conduct clinical trials to accelerate the development of new cancer diagnostics and therapies. Since 1971, Ludwig has invested more than $1.6 billion in life-changing cancer research through the not-for-profit Ludwig Institute for Cancer Research and the six U.S.-based Ludwig Centers. http://www.ludwigcancerresearch.org

About Karolinska Institutet

Karolinska Institutet is one of the world's leading medical universities. It accounts for over 40 per cent of the medical academic research conducted in Sweden and offers the country's broadest range of education in medicine and health sciences. Since 1901 the Nobel Assembly at Karolinska Institutet has selected the Nobel laureates in Physiology or Medicine. More on ki.se/english

For further information, please contact Rachel Steinhardt, rsteinhardt@licr.org or +1-212-450-1582 or the Press Office at Karolinska Institutet, pressinfo@ki.se or +46 (0)8-524 860 77.

Rachel Steinhardt | EurekAlert!
Further information:
http://www.licr.org
http://www.ludwigcancerresearch.org

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>