Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A little bit of spit reveals a lot about what lives in your mouth

27.02.2009
Like it or not, your mouth is home to a thriving community of microbial life. More than 600 different species of bacteria reside in this "microbiome," yet everyone hosts a unique set of bugs, and this could have important implications for health and disease.

In a study published online in Genome Research (www.genome.org), scientists have performed the first global survey of salivary microbes, finding that the oral microbiome of your neighbor is just as different from yours as someone across the globe.

The human body harbors ten times more bacterial cells than human cells – a stunning figure that suggests a likely dynamic between ourselves and the bacteria we carry, both in healthy and disease states. The National Institutes of Health recently launched an initiative to categorize the microbiomes of several regions of the body, with early studies focusing on the intestines and skin. It is appreciated that the human mouth, a major entry point for bacteria into the body, also contains a diverse array of microbial species. Yet microbiome diversity between individuals, and how this relates to diet, environment, health, and disease, remains unexplored.

In this study, scientists have conducted the first in-depth study of global diversity in a human microbiome, characterizing the microbial life in human saliva from regions around the world. The researchers, led by Dr. Mark Stoneking of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, have sequenced and analyzed variation in the bacterial gene encoding 16S rRNA, a component of the ribosome, in the salivary "metagenome" of 120 healthy subjects from six geographic areas. Stoneking and colleagues then compared the sequences they found with a database of 16S rRNA sequences to categorize the types of bacteria present.

The group observed that there is considerable diversity of bacterial life in the saliva microbiome, both within and between individuals. However, they made an unexpected finding when comparing samples from different geographic areas. "The saliva microbiome does not vary substantially around the world," Stoneking described. "Which seems surprising given the large diversity in diet and other cultural factors that could influence the human salivary microbiome." Stoneking explained that this suggests the life inhabiting the mouth of your next-door neighbor is likely to be just as different from yours as someone on the other side of the world.

Stoneking noted that by studying sequences from an easily obtained saliva sample, their work has provided the foundation for future studies exploring the influence of diet, cultural factors, and disease on variation in the saliva microbiome. In addition, the group's findings could help analyze human migrations and populations. While it may not be pleasant to think about the life teeming in your mouth, it is now evident that we will be able to learn a lot about oral health and disease by understanding what is living there.

Peggy Calicchia | EurekAlert!
Further information:
http://www.cshl.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>