Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A little bit of spit reveals a lot about what lives in your mouth

Like it or not, your mouth is home to a thriving community of microbial life. More than 600 different species of bacteria reside in this "microbiome," yet everyone hosts a unique set of bugs, and this could have important implications for health and disease.

In a study published online in Genome Research (, scientists have performed the first global survey of salivary microbes, finding that the oral microbiome of your neighbor is just as different from yours as someone across the globe.

The human body harbors ten times more bacterial cells than human cells – a stunning figure that suggests a likely dynamic between ourselves and the bacteria we carry, both in healthy and disease states. The National Institutes of Health recently launched an initiative to categorize the microbiomes of several regions of the body, with early studies focusing on the intestines and skin. It is appreciated that the human mouth, a major entry point for bacteria into the body, also contains a diverse array of microbial species. Yet microbiome diversity between individuals, and how this relates to diet, environment, health, and disease, remains unexplored.

In this study, scientists have conducted the first in-depth study of global diversity in a human microbiome, characterizing the microbial life in human saliva from regions around the world. The researchers, led by Dr. Mark Stoneking of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, have sequenced and analyzed variation in the bacterial gene encoding 16S rRNA, a component of the ribosome, in the salivary "metagenome" of 120 healthy subjects from six geographic areas. Stoneking and colleagues then compared the sequences they found with a database of 16S rRNA sequences to categorize the types of bacteria present.

The group observed that there is considerable diversity of bacterial life in the saliva microbiome, both within and between individuals. However, they made an unexpected finding when comparing samples from different geographic areas. "The saliva microbiome does not vary substantially around the world," Stoneking described. "Which seems surprising given the large diversity in diet and other cultural factors that could influence the human salivary microbiome." Stoneking explained that this suggests the life inhabiting the mouth of your next-door neighbor is likely to be just as different from yours as someone on the other side of the world.

Stoneking noted that by studying sequences from an easily obtained saliva sample, their work has provided the foundation for future studies exploring the influence of diet, cultural factors, and disease on variation in the saliva microbiome. In addition, the group's findings could help analyze human migrations and populations. While it may not be pleasant to think about the life teeming in your mouth, it is now evident that we will be able to learn a lot about oral health and disease by understanding what is living there.

Peggy Calicchia | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>